
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КОМПЛЕКСНЫЕ ЧИСЛА. ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. ВВЕДЕНИЕ В АНАЛИЗ

Задачи для практических занятий и самостоятельной работы (1-й семестр)

Рязань 2009

УДК 512+517(076.1)

Комплексные числа. Линейная алгебра. Аналитическая геометрия. Введение в анализ: задачи для практических занятий и самостоятельной работы / Рязан. гос. радиотехн. ун-т; сост.: А. В. Дубовиков, Ю.С. Митрохин, С.В. Богатова, Г.С. Лукьянова, А.И. Сюсюкалов, К.А. Ципоркова, Т.И. Дорофеева, С.С. Крыгина, А.В. Лоскутов, И.В. Бодрова, Т.Л. Львова, Е.А. Сюсюкалова. – Рязань, 2009. – 68 с.

Содержат разноуровневые задачи для практических занятий и самостоятельной работы по математике. Задачи повышенного уровня отмечены звёздочкой (*).

Рекомендуется преподавателям кафедры высшей математики и студентам всех специальностей дневной формы обучения.

Модуль и аргумент комплексного числа, матрица, определитель, системы алгебраических уравнений, вектор, предел, предел функции, непрерывность, производная

Печатается по решению редакционно-издательского совета Рязанского государственного радиотехнического университета.

Рецензент: кафедра высшей математики Рязанского государственного радиотехнического университета (зав. кафедрой канд. физ-мат. наук, доц. К.В. Бухенский)

ОГЛАВЛЕНИЕ

ГЛАВА 1. ВВЕДЕНИЕ В КУРС МАТЕМАТИКИ1
ГЛАВА2. ЛИНЕЙНАЯ АЛГЕБРА5
ГЛАВА 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ15
ГЛАВА 4. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ30
ГЛАВА 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ39

ГЛАВА 1. ВВЕДЕНИЕ В КУРС МАТЕМАТИКИ

1.1. Множества. Операции над множествами

Упростить выражения, если $B \subset A$.

1.
$$(A \mathbf{I} B) \mathbf{I} (A \mathbf{U} B)$$
. 2. $(A \mathbf{U} B) \mathbf{U} (B \mathbf{I} A)$.

3.
$$(A \mathbf{I} B)\mathbf{U}(A \setminus B)$$
. 4. $(A \mathbf{U} B)\mathbf{I}(B \setminus A)$.

Упростить выражения, если $C \subset B \subset A$.

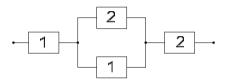
7.
$$(A \setminus C)U(BUC)I(BIC)$$
.

8.
$$(A U B) \setminus (B U C) I (C \setminus B)$$
.

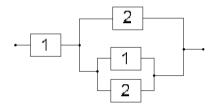
Упростить выражения, если A I $B = \emptyset$, $C \subset A$.

9.*
$$(A I C)U(B U C)I (A U B)$$
.

 Ω – универсальное множество. A,B – произвольные множества из Ω . Упростить выражения.


12. *
$$(A U B) I (\overline{A} I B) U (A I B)$$
.

13.* (A
$$\mathbf{I}$$
 B) \mathbf{I} ($\overline{\mathbf{A}}$ \mathbf{I} B) \mathbf{U} (A \mathbf{U} B).


$$14.$$
* (A \mathbf{U} B) \mathbf{I} ($\overline{\mathbf{A}}$ \mathbf{I} B) \mathbf{I} (A \mathbf{I} B).

На рисунке приведены электрические цепи, и цифрами обозначены элементы цепи (одинаковые цифры означают одинаковые элементы). Пусть A_i – событие, что і-й элемент работает, а \overline{A}_i – і-й элемент не работает $(A_i \ \mathbf{U} \ \overline{A}_i = \Omega)$. Записать событие, что цепь проводит ток (ответ упростить).

15.*

16.

1.2. Действия над комплексными числами,

записанными в алгебраической форме

Заданы комплексные числа $\,{\bf Z}_1\,$ и $\,{\bf Z}_2\,$. Найти:

a)
$$z_1 + z_2$$

B)
$$\overline{Z}_1 - Z_1$$

$$\Gamma$$
) $\mathbf{Z}_1 \cdot \mathbf{Z}_2$;

д)
$$Z_1 \cdot \overline{Z}_2$$
; e) $Z_2 \cdot \overline{Z}_2$; ж) $\frac{Z_1}{Z_2}$; з) $\frac{\overline{Z}_1}{Z_2}$.

ж)
$$\frac{\mathbf{Z}_1}{\mathbf{Z}_2}$$
; з) $\frac{\overline{\mathbf{Z}}_1}{\mathbf{Z}_2}$

17.
$$z_1 = 3 - i$$
, $z_2 = 1 + 3i$. 18. $z_1 = 2 + i$, $z_2 = 3 - i$.

18.
$$z_1 = 2 + i$$
, $z_2 = 3 - i$.

19.
$$z_1 = 3 + 2i$$
, $z_2 = 1 - 2i$.

Заданы комплексные числа $\,{\bf Z}_1\,$ и $\,{\bf Z}_2\,$. Найти:

a)
$$z_1^2 - z_2$$
; 6) $z_1 + 2\overline{z}^2$; b) $\frac{z_1}{z_2^2}$; r) $\frac{\overline{z}^2}{z_2}$.

20.
$$z_1 = 2 + 2i$$
, $z_2 = 1 + 3i$. 21. $z_1 = 2 + 3i$, $z_2 = -1 + i$.

$$22.^* z_1 = 3 + i, z_2 = -1 - 3i.$$

1.3. Модуль и аргумент комплексного числа.

Тригонометрическая и показательная формы записи комплексного числа

Дано комплексное число z. Найти модуль и аргумент этого числа, записать число z в тригонометрической и показательной формах, $-\pi < \arg z \le \pi$.

23.
$$z = 1 + i$$
. 24. $z = -1 + i$. 25. $z = 1 - i$. 26. $z = -1 - i$.

27.
$$z = \sqrt{3} - i$$
. 28. $z = 1 + i\sqrt{3}$. 29. $z = -2i$.

Дано комплексное число ${\bf Z}$. Записать в тригонометрической и показательной формах числа.

$$30.^* z^2$$
, если $z = 1 - i$. $31.^* z + 2\overline{z}^2$, если $z = 1 + i$.

$$32.^* z^2 - \overline{z}$$
, если $z = 1 + i\sqrt{3}$.

1.4. Умножение и деление комплексных чисел

в тригонометрической форме

Даны комплексные числа \mathbf{Z}_1 и \mathbf{Z}_2 . Записать $\mathbf{Z}_1 \cdot \mathbf{Z}_2$ и $\frac{\mathbf{Z}_1}{\mathbf{Z}_2}$ в

тригонометрической форме, используя запись $\, z_1^{} \,$ и $\, z_2^{} \,$ в тригонометрической форме, $-\pi < arg \, z \leq \pi \,$.

33.
$$z_1 = \sqrt{3} + i$$
, $z_2 = 1 - \sqrt{3}i$. 34. $z_1 = -1 + \sqrt{3}i$, $z_2 = -1 - i$.

35.
$$z_1 = \sqrt{3} - i$$
, $z_2 = -1 + \sqrt{3}i$. 36. $z_1 = 1 + i\sqrt{3}$, $z_2 = -\sqrt{3} - i$.

Даны комплексные числа ${\bf Z}_1$ и ${\bf Z}_2$. Записать ${\bf Z}_1^2 \cdot {\bf Z}_2$ и $\frac{\overline{\bf Z}_1^2}{{\bf Z}_2}$ в тригонометрической форме.

$$37.^* z_1 = 1 + i, z_2 = 1 + \sqrt{3}i.$$

$$38.^* z_1 = \sqrt{3} - i, z_2 = -1 + i.$$

39.*
$$z_1 = -\sqrt{3} + i$$
, $z_2 = -1 - i$.

1.5. Формула Муавра

Дано комплексное число Z. Используя формулу Муавра, вычислить (результат представить в алгебраической форме).

40.
$$z^{12}$$
, $z = 1 - i$. 41. z^{15} , $z = \sqrt{3} + i$.

42.
$$z^{20}$$
, $z = -1 + i$. 43. z^{12} , $z = -\sqrt{3} - i$.

44.*
$$z^{18}$$
, $z = \frac{1-i}{\sqrt{3}+i}$. 45.* z^{24} , $z = \frac{1-i}{\sqrt{3}+i}$.

46.*
$$z^{15}$$
, $z = \frac{\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}}{-\sqrt{3} + i}$.

1.6. Извлечение корней из комплексных чисел

Дано комплексное число Z. Найти $\sqrt[n]{Z}$ (результат записать в алгебраической форме). Изобразить $\sqrt[n]{Z}$ на комплексной плоскости.

47.
$$\sqrt{z}$$
, $z = 1 - i\sqrt{3}$. 48. $\sqrt[3]{z}$, $z = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.

49.
$$\sqrt{z}$$
, $z = -1 + i\sqrt{3}$. 50. \sqrt{z} , $z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Дано комплексное число **Z** . Найти $\sqrt[n]{z^m}$ (результат записать в алгебраической форме).

$$51.^* \sqrt[3]{z^2}$$
, $z = \frac{1}{2}i + \frac{\sqrt{3}}{2}$. $52.^* \sqrt[4]{z^2}$, $z = -1 - i\sqrt{3}$.

$$53.^* \sqrt[3]{z^3}$$
, $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

1.7. Решение алгебраических уравнений

на множестве комплексных чисел

Найти корни уравнения на множестве комплексных чисел.

54.
$$z^2 = -16$$
. 55. $z^3 = 8$. 56 $z^2 + 4z + 5 = 0$.

57.
$$z^4 - 3z^2 - 4 = 0$$
. 58. $z^2 = i$. 59. $z^2 + 3iz - 2 = 0$.

На множестве комплексных чисел разложить на множители многочлены.

60.*
$$z^4 + 5z^2 + 4$$
. 61.* $z^3 - 3z + 2$. 62.* $z^3 - z^2 + iz - i$.

1.8. Изображение множеств на комплексной плоскости

Изобразить на комплексной плоскости множества, удовлетворяющие заданным условиям.

63.
$$1 \le |z-1| < 2$$
. 64. $2 < |z+i| \le 3$. 65. $\frac{\pi}{3} \le \arg(z+1) < \frac{\pi}{2}$.

66.
$$\begin{cases} |z| \ge 1 \\ \frac{\pi}{6} \le \arg z \le \frac{\pi}{3} \end{cases} = \begin{cases} Im(z+1) \ge 1 \\ Re(z-i) \le 2 \end{cases} = \begin{cases} |z-i| \ge 1 \\ |z+1| \le 3 \end{cases}$$

$$69.* \begin{cases} 1 \le |z| \le 2 \\ \frac{\pi}{3} \le \arg(z - i) \le \frac{3\pi}{4} \end{cases}$$
 $70.* |z| + |z - i| = 1.$

71.*
$$|z+i|-|z-i|=2$$
.

ГЛАВА 2. ЛИНЕЙНАЯ АЛГЕБРА

2.1. Умножение матриц. Линейные операции над матрицами

Найти произведение матриц A и B.

72.
$$A = \begin{pmatrix} 3 & -2 \\ 5 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$.

73.
$$A = \begin{pmatrix} 4 & 0 & -2 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix}$$

74.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}$.

75.
$$A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$.

76.
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 & 0 \end{pmatrix}$.

77. Найти
$$A^T \cdot B + 2(A - B)$$
, если $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$.

78. Найти
$$AE + 2B^{T}$$
, если $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$.

79. Найти
$$AB + 2B^{T}$$
, если $A = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

80. Найти
$$2A^{T} + 3BE$$
, если $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$.

81. Найти
$$2(A - B)E$$
, если $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$.

Найти значение матричного многочлена.

82.
$$f(x) = 2x^2 - 3$$
. Найти $f(A)$, если $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$.

83.
$$f(x) = x^2 + x + 1$$
. Найти $f(A)$, если $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$.

84.
$$f(x) = x^2 - 2x + 2$$
. Найти $f(A)$, если $A = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}$.

85.
$$f(x) = 3x^2 + 2$$
. Найти $f(A)$, если $A = \begin{pmatrix} 2 & 0 \\ -1 & -2 \end{pmatrix}$.

86.
$$f(x) = -x^3 - 1$$
. Найти $f(A)$, если $A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.

2.2. Определители 2-го и 3-го порядков

Вычислить определители.

87.
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 88. $\begin{vmatrix} 1 & 2 \\ -3 & -4 \end{vmatrix}$ 89. $\begin{vmatrix} -3 & 5 \\ 0 & 1 \end{vmatrix}$ 90. $\begin{vmatrix} -2 & 0 \\ 0 & 5 \end{vmatrix}$

95.
$$\begin{vmatrix} 3 & 2 & -1 \\ -2 & 2 & 3 \\ 4 & 2 & -3 \end{vmatrix}$$
 96. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix}$

2.3. Разложение определителя по произвольной строке (столбцу)

Вычислить определитель разложением по произвольной строке (столбцу).

97.
$$\begin{vmatrix} 2 & 0 & 3 \\ 7 & 1 & 6 \\ 6 & 0 & 5 \end{vmatrix}$$
98. $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 6 \end{vmatrix}$
99. $\begin{vmatrix} 2 & 1 & -3 \\ 0 & 1 & -1 \\ 3 & -2 & 1 \end{vmatrix}$
100. $\begin{vmatrix} 5 & 6 & 3 \\ 0 & 2 & 0 \end{vmatrix}$
101. $\begin{vmatrix} 3 & 0 & 2 \\ -5 & 3 & -1 \end{vmatrix}$
102.* $\begin{vmatrix} 1 & 0 & 3 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{vmatrix}$

$$\begin{vmatrix}
5 & 6 & 3 \\
0 & 2 & 0 \\
7 & -4 & 5
\end{vmatrix}$$

$$\begin{vmatrix}
3 & 0 & 2 \\
-5 & 3 & -1 \\
6 & 0 & 3
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 3 & 5 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 3 \\
0 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 3 & 4 \\ 2 & 0 & 0 & 8 \\ 3 & 0 & 0 & 2 \\ 4 & 4 & 7 & 5 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 4 & 5 \\ 1 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -2 & -3 & 0 & 2 \\ 1 & -1 & 2 & 2 \\ 3 & -1 & 5 & -2 \\ 0 & -2 & 4 & 1 \end{vmatrix}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{vmatrix} 107. \\ 0 & & L & M & M \\ 0 & & L & M & M \\ 0 & & L & M & M \\ 0 & & & L & 1 & 1 \\ 0 & & & & & & & & & & & & & & & & & & &$	
$\begin{vmatrix} 0 & 0 & 0 & 4 \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \\ 0 & 0 & 0 & \mathbf{L} & 1 & n-1 \\ 0 & 0 & 0 & \mathbf{L} & 1 & n-1 \\ 0 & n-1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & n-2 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix}$ $\begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
$\begin{vmatrix} 0 & \mathbf{L} & \mathbf{n} \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 & \mathbf{L} & 1 \\ 0 & \mathbf{n} - 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & \mathbf{n} - 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & \mathbf{n} - 2 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix}$ $\begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
$ \begin{vmatrix} $	
$ \begin{vmatrix} 0 & n-1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & n-2 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix} $ $ \begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix} $	
$ \begin{vmatrix} 0 & n-1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & n-2 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix} $ $ \begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix} $	
$ \begin{vmatrix} 0 & 0 & n-2 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix} $ $ \begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix} $	
$\begin{vmatrix} 0 & 0 & 0 & \mathbf{M} & 1 & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix}$ $\begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
$\begin{vmatrix} 0 & 0 & 0 & \mathbf{L} & \mathbf{M} & 1 \\ 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \end{vmatrix}$ $\begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
$\begin{vmatrix} 0 & 0 & 0 & \mathbf{L} & \mathbf{L} & 1 \\ -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
$ \begin{vmatrix} -1 & 1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & -1 & 1 & \mathbf{L} & \mathbf{L} & 1 \\ 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix} $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{vmatrix} 0 & 0 & -1 & 1 & \mathbf{L} & 1 \\ 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix} $	
$\begin{vmatrix} 0 & 0 & 0 & -1 & \mathbf{M} \\ 0 & \mathbf{L} & \mathbf{M} & \mathbf{M} \end{vmatrix}$	
0 L M M	
$\begin{vmatrix} 0 & \mathbf{L} & -1 \end{vmatrix}$	
n n L L L n	
0 n n L L n	
0 0 n L L n	
$\begin{vmatrix} 111.^* & 0 & 0 & n & \mathbf{L} & \mathbf{L} & n \\ 0 & 0 & 0 & n & \mathbf{L} & n \end{vmatrix}$	
0 L M M	
$\begin{bmatrix} 0 & 0 & \mathbf{L} & \mathbf{n} \end{bmatrix}$	

2.4. Обратная матрица

Найти матрицу, обратную к А.

112.
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
113. $A = \begin{pmatrix} 1 & 1 & -1 \\ 8 & 3 & -6 \\ -4 & -1 & 3 \end{pmatrix}$
114. $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$
115. $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$
116. $A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & -2 \\ 2 & 3 & 3 \end{pmatrix}$

2.5. Правило Крамера

Решить системы по правилу Крамера.

117.
$$\begin{cases} 3x - 5y = 13, \\ 2x + 7y = 81. \end{cases}$$
118.
$$\begin{cases} 2x + y = 5, \\ x + 3z = 16, \\ 5y - z = 10, \end{cases}$$
119.
$$\begin{cases} x - y = -1, \\ 2x + y = 7. \end{cases}$$
120.
$$\begin{cases} \sqrt{3}x + 2y = 11, \\ 4x - \sqrt{3}y = 0. \end{cases}$$
121.
$$\begin{cases} x - \sqrt{5}y = 0, \\ 2\sqrt{5}x - 5y = -10. \end{cases}$$
122.*
$$\begin{cases} 2x - 3y + z = -7, \\ x + 2y - 3z = 14, \\ -x - y + 5z = -18. \end{cases}$$
123.*
$$\begin{cases} x + 2y + 3z = 3, \\ 2x + 6y + 4z = 6, \\ 3x + 10y + 8z = 21. \end{cases}$$
124.*
$$\begin{cases} x + 2y + 3z = 8, \\ 4x + 5y + 6z = 19, \end{cases}$$

2.6. Ранг матрицы

Найти ранг матрицы.

2.7. Решение матричных уравнений

с помощью обратной матрицы

Решить матричное уравнение.

136.
$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \mathbf{X} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$
 137.
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \mathbf{X} = \begin{pmatrix} 2 & 2 \\ 3 & 2 \end{pmatrix}$$

$$138. \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot X = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix}.$$

$$139.^*\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} -1 & -2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}.$$

$$140.^* \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} -1 & 1/2 \\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}.$$

$$141.^{*} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -5 & 6 \\ -4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}.$$

$$142.^{*} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & -2 \\ -4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}.$$

143.
$$\begin{cases} 3x - 5y = 13, \\ 2x + 7y = 81. \end{cases}$$
 144.
$$\begin{cases} 3x - 4y = -6, \\ 3x + 4y = 18. \end{cases}$$

145.
$$\begin{cases} 7x + 2y + 3z = 15, \\ 5x - 3y + 2z = 15, \\ 10x - 11y + 5z = 36. \end{cases}$$
 146.
$$\begin{cases} 2x + y = 5, \\ x + 3z = 16, \\ 5y - z = 10. \end{cases}$$

147.
$$\begin{cases} x + y - 2z = 6, \\ 2x + 3y - 7z = 16, \\ 5x + 2y + z = 16. \end{cases}$$
 148.
$$\begin{cases} 5x + 8y + z = 2, \\ 3x - 2y + 6z = -7, \\ 2x + y - z = -5. \end{cases}$$

$$\begin{cases} 2x - 3y + z = -7, \\ x + 4y + 2z = -1, \\ x - 4y = -5. \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2, \\ x_1 + x_2 + 5x_3 + 2x_4 = 1, \\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3, \\ x_1 + x_2 + 3x_3 + 4x_4 = -3. \end{cases}$$

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20, \\ x_1 + 3x_2 + 2x_3 + x_4 = 11, \\ 2x_1 + 10x_2 + 9x_3 + 9x_4 = 40, \\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37. \end{cases}$$

2.8. Однородные СЛАУ. ФСР

Найти общее решение и фундаментальную систему решений однородной системы линейных уравнений.

152.
$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ 2x_1 + x_2 - x_3 = 0. \end{cases}$$
153.
$$\begin{cases} x_1 + x_2 = 0, \\ -x_1 - x_2 = 0. \end{cases}$$
154.
$$\begin{cases} x_1 + x_2 - x_3 = 0, \\ x_1 - x_2 + x_3 = 0. \end{cases}$$
155.
$$\begin{cases} x_1 + x_2 - x_3 = 0, \\ -x_1 - x_2 + x_3 = 0. \end{cases}$$
156.
$$\begin{cases} 2x_1 - 3x_2 = 0, \\ 4x_1 - 6x_2 = 0. \end{cases}$$

$$157.* \begin{cases} x_1 + 2x_2 + 3x_3 = 0, \\ 4x_1 + 5x_2 + 6x_3 = 0, \\ 7x_1 + 8x_2 + 9x_3 = 0. \end{cases} 158.* \begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

$$159.* \begin{cases} x_1 - x_2 - 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 - 4x_4 = 0, \\ 2x_1 + x_2 + 2x_3 - x_4 = 0, \\ x_1 - 4x_2 + x_3 + 10x_4 = 0. \end{cases}$$

2.9. Исследование СЛАУ методом Гаусса

Исследовать СЛАУ методом Гаусса.

162.
$$\begin{cases} 2x - y + z = -2, \\ x + 2y + 3z = -1, \\ x - 3y - 2z = 3. \end{cases}$$
 163.
$$\begin{cases} x - \sqrt{3}y = 1, \\ \sqrt{3}x - 3y = \sqrt{3}. \end{cases}$$

164.
$$\begin{cases} 2x + y + 3z = 13, \\ x + y + z = 6, 165. \end{cases} \begin{cases} 2x + y + z = 7, \\ x + 2y + z = 8, \\ x + y + 2z = 9. \end{cases}$$

166.
$$\begin{cases} x + 2y + 3z = 3, \\ 3x + y + 2z = 7, \\ 2x + 3y + z = 2. \end{cases}$$

$$\begin{cases} x + 2y - 4z = 1, \\ 2x + y - 5z = -1, \\ x - y - z = -2. \end{cases}$$

$$168.* \begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = 3, \\ 3x_1 + 5x_2 + 3x_3 + 5x_4 = 6, \\ 6x_1 + 8x_2 + x_3 + 5x_4 = 8, \\ 3x_1 + 5x_2 + 3x_3 + 7x_4 = 8. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \\ 2x_1 + 3x_2 + 2x_3 + 5x_4 = 3, \\ 9x_1 + x_2 + 4x_3 - 5x_4 = 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 = 5, \\ 7x_1 + x_2 + 6x_3 - x_4 = 7. \end{cases}$$

$$171.* \begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2, \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 5, \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 = 3. \end{cases}$$

ГЛАВА 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

- 3.1. Линейные операции над векторами и их свойства
- 172. Какому условию должны удовлетворять векторы \overline{a} и \overline{b} , чтобы: 1) $\left|\overline{a} + \overline{b}\right| = \left|\overline{a} \overline{b}\right|$; 2) $\left|\overline{a} + \overline{b}\right| > \left|\overline{a} \overline{b}\right|$;
 - 3) $\left| \overline{a} + \overline{b} \right| < \left| \overline{a} \overline{b} \right|$?
- 173. Векторы \overline{a} и \overline{b} образуют угол $\phi = \frac{2\pi}{3}$, причем $|\overline{a}| = 3$, $|\overline{b}| = 5$. Определить $|\overline{a} + \overline{b}|$ и $|\overline{a} \overline{b}|$.
- 174. По данным векторам \overline{a} и \overline{b} построить векторы $\overline{a} 2\overline{b}$, $\frac{1}{2}\overline{b} 3\overline{a}$, $\frac{1}{3}\overline{a} + \frac{2}{3}\overline{b}$.
- 175. В треугольнике $\stackrel{\cdot}{ABO}$ даны векторы $\stackrel{\cdot}{\overline{a}} = \stackrel{\cdot}{OA}$ и $\stackrel{\cdot}{\overline{b}} = \stackrel{\cdot}{\overline{OB}}$. Найти векторы $\stackrel{\cdot}{\overline{MA}}$ и $\stackrel{\cdot}{\overline{MB}}$, где M середина стороны $\stackrel{\cdot}{AB}$.

- 176.* В треугольной пирамиде SABC даны векторы $\overline{a}=\overline{SA}$, $\overline{b}=\overline{SB}$, $\overline{c}=\overline{SC}$. Найти вектор \overline{SM} , где M центр тяжести основания ABC.
- 177. * Пусть \overline{a} , \overline{b} , \overline{c} единичные векторы, составляющие с данной осью 1 соответственно углы $\frac{\pi}{3}$, $\frac{2\pi}{3}$, π . Найти проекцию вектора $3\overline{a}+2\overline{b}+\overline{c}$ на ось 1.
- 178. Вычислить модуль вектора $\overline{a} = \overline{i} + 2\overline{j} + \overline{k} \frac{1}{5} \left(4\overline{i} + 8\overline{j} + 3\overline{k} \right)$ и найти его направляющие косинусы.
- 179. * Даны три последовательные вершины параллелограмма: A(1;1;4) , B(2;3;-1) , C(-2;2;0). Найти четвертую вершину D , противоположную вершине B .
- 180. * Даны векторы $\overline{a}=2\overline{i}-3\overline{j}+6\overline{k}$ и $\overline{b}=-\overline{i}+2\overline{j}-2\overline{k}$, приложенные к общей точке. Найти орт биссектрисы угла между \overline{a} и \overline{b} .
- 181. Найти орт вектора $\bar{a} = 3\bar{i} + 4\bar{j} 12\bar{k}$ и его направляющие косинусы.

3.2. Условие коллинеарности двух векторов

- 182. Доказать, что точки A(-3;-7;-5), B(0;-1;-2) и C(2;3;0) лежат на одной прямой, причем точка B расположена между A и C.
- 183. Определить, при каких значениях α и β векторы $\overline{a}=2\overline{i}+\alpha\overline{j}+\overline{k}$ и $\overline{b}=3\overline{i}-6\overline{j}+\beta\overline{k}$ коллинеарны.
- 184. Доказать, что четырехугольник с вершинами A(2;1;-4), B(1;3;5), C(7;2;3), D(8;0;-6) есть параллелограмм. Найти длины его сторон.

- 185. Даны точки A(-1;5;-10), B(5;-7;8), C(2;2;-7) и D(5;-4;2) . Проверить, что векторы \overline{AB} и \overline{CD} коллинеарны. Какой из них длиннее другого, во сколько раз и как они направлены?
- 186. Дан вектор $\overline{c}=16\overline{i}-15\overline{j}+12\overline{k}$. Определить разложение по этому же базису вектора \overline{d} , параллельного вектору \overline{c} , противоположного с ним по направлению, при условии, что $\left|\overline{d}\right|=75$.
- 187. * Два вектора $\overline{a}(2;-3;6)$ и $\overline{b}(-1;2;-2)$ приложены к одной точке. Определить координаты вектора \overline{c} , направленного по биссектрисе угла между векторами \overline{a} и \overline{b} , если $|\overline{c}|=3\sqrt{42}$.
- 188. * Векторы $\overline{AB}(2;6;-4)$ и $\overline{AC}(4;2;-2)$ совпадают со сторонами треугольника ABC. Определить координаты векторов, приложенных к вершинам треугольника и совпадающих с его медианами AM, BN, CP.
- 189. * Проверить, что четыре точки A(3;-1;2), B(1;2;-1), C(-1;1;-3), D(3;-5;3) служат вершинами трапеции.
- 190.* Коллинеарны ли векторы \overline{c}_1 и \overline{c}_2 , разложенные по векторам \overline{a} и \overline{b} , если $\overline{a}(4;2;-7)$, $\overline{b}(5;0;-3)$, $\overline{c}_1=\overline{a}-3\overline{b}$, $\overline{c}_2=6\overline{b}-2\overline{a}$?
- 191. * Найти вектор \overline{x} , коллинеарный вектору $\overline{a}=\overline{i}-2\overline{j}-2\overline{k}$, образующий с ортом \overline{j} острый угол и $|\overline{x}|=15$.
 - З.З. Линейная зависимость векторов.
 Разложение вектора по базису
- 192. Заданы векторы $\overline{p}(2;-3)$ и $\overline{q}(9;4)$. Проверить, образуют ли они базис, и, если образуют, найти разложение вектора $\overline{d}(49;14)$ по базису $\{\overline{p},\overline{q}\}$.
- 193. Проверить, образуют ли базис векторы: 1) $\overline{a}(-2;1;3)$,

$$\overline{b}(0; 2; 1), \overline{c}(6; 4; 0); 2) \overline{a}(1; 0; 1), \overline{b}(-1; 2; 1), \overline{c}(1; 2; 3).$$

В случае утвердительного ответа найти линейную зависимость между ними.

- 194. Заданы векторы $\overline{e}\bigg(-1;1;\frac{1}{2}\bigg)$ и $\overline{a}\big(2;-2;-1\big)$. Убедиться, что они коллинеарны и найти разложение вектора \overline{a} по базису $B=\left\{\overline{e}\right\}$.
- 195. На плоскости заданы векторы $\overline{e}_1(-1;2)$, $\overline{e}_2(2;1)$ и $\overline{a}(0;-2)$. Убедиться, что $B=\left\{\overline{e}_1,\,\overline{e}_2\right\}$ базис в множестве всех векторов на плоскости. Построить заданные векторы и найти разложение вектора \overline{a} по базису B.
- 196. Задана тройка некомпланарных векторов $\overline{e}_1(1;0;0)$, $\overline{e}_2(1;1;0)$, $\overline{e}_3(1;1;1)$. Вычислить координаты вектора $\overline{a}=-2\overline{i}-\overline{k}$ в базисе $B=\left\{\overline{e}_1,\,\overline{e}_2,\overline{e}_3\right\}$ и написать разложение вектора \overline{a} в этом базисе.
- 197. * Заданы векторы $\overline{a}=2\overline{i}+3\overline{j}$, $\overline{b}=-3\overline{j}-2\overline{k}$, $\overline{c}=\overline{i}+\overline{j}-\overline{k}$. Найти разложение вектора $\overline{a}+\overline{b}-2\overline{c}$ по базису $B=\left\{\overline{i},\overline{j},\overline{k}\right\}$.
- 198.* Даны три вектора $\overline{a}(3;-1)$, $\overline{b}(1;-2)$, $\overline{c}(-1;7)$. Определить разложение вектора $\overline{p}=\overline{a}+\overline{b}+\overline{c}$ по базису $B=\left\{\overline{a},\overline{b}\right\}$, проверив, что \overline{a} и \overline{b} образуют базис.
- 199. * Даны три вектора $\overline{p}(3;-2;1)$, $\overline{q}(-1;1;-2)$, $\overline{r}(2;1;-3)$. Образуют ли эти векторы базис? Найти разложение вектора $\overline{c}(11;-6;5)$ по базису $B=\left\{\overline{p},\overline{q},\overline{r}\right\}$.
- ${f 200.}^*$ Даны четыре вектора: ${f \overline{a}(2;1;0)}, {f \overline{b}(1;-1;2)}, {f \overline{c}(2;2;-1)}, {f \overline{d}(3;7;-7)}$. Найти разложение вектора ${f \overline{d}}$ по базису ${f B}=\left\{{f \overline{a},{f \overline{b},\overline{c}}}\right\}$.

201. * Найти линейную зависимость между данными некомпланарными векторами: $\overline{m}=\overline{a}-\overline{b}+\overline{c}$, $\overline{n}=\overline{b}+\frac{\overline{c}}{2}$, $\overline{p}=\overline{a}+\overline{b}$, $\overline{q}=\overline{b}-\overline{c}$.

3.4. Полярные координаты на плоскости

202. Построить точки, заданные полярными координатами:
$$A\left(3; \frac{\pi}{2}\right)$$
, $B\left(-2; \frac{5\pi}{4}\right)$, $C\left(3; -\frac{\pi}{6}\right)$, $D(-2; 0)$.

- 203. Найти полярное уравнение прямой x = 1. Построить эту прямую.
- 204. Что представляют собой линии, заданные в полярной системе координат уравнениями: 1) $\rho = a$, 2) $\phi = \alpha$,
 - 3) $\phi = \alpha + \pi$, где α , α const?
- 205. Дано полярное уравнение линии $ho^2 = 9 \sin 2\phi$. Построить эту линию. Найти ее уравнение в декартовой системе координат.
- 206. Найти полярное уравнение окружности $x^2 + y^2 = 2ax$.
- 207. Построить линию $\rho = 2\cos 2\phi$. Написать уравнение этой линии в декартовой системе координат.
- 208. Построить кардиоиду $\rho = 2a(1+\cos\phi)$, a>0. Написать ее уравнение в декартовой системе координат.
- 209. Построить линию $\rho = 2 + \cos \phi$ (улитка Паскаля). Написать уравнение этой линии в декартовой системе координат.
- 210. Найти полярное уравнение окружности радиусом $\,a\,$, центр которой находится в полюсе, если её уравнение в декартовой системе координат имеет вид $\,x^2+y^2=a^2\,$.
- $211.^*$ Найти полярное уравнение эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, если направление полярной оси совпадает с положительным направлением оси абсцисс, а полюс находится в центре эллипса.

3.5. Скалярное произведение двух векторов

и его приложение

- 212. Даны два вектора $\overset{\mathbf{v}}{\mathbf{a}} = (7; 2; -1)$ и $\overset{\mathbf{b}}{\mathbf{b}} = (1; 2; -3)$. Найти скалярное произведение этих векторов и косинус угла между ними.
- 213. Векторы \overline{a} и \overline{b} взаимно перпендикулярны, вектор \overline{c} образует с ними углы, равные $\frac{\pi}{3}$. Зная, что $|\overline{a}| = |\overline{b}| = 2$, $|\overline{c}| = 1$, найти: 1) $(2\overline{a} \overline{b})(\overline{c} \overline{a})$; 2) $(\overline{a} + \overline{b} + \overline{c})^2$.
- 214. Дано, что $\left|\overline{a}\right|=2$, $\left|\overline{b}\right|=5$. При каком значении α векторы $\alpha\overline{a}+17\overline{b}$ и $3\overline{a}-\overline{b}$ будут перпендикулярны, если $\angle\left(\overline{a},\overline{b}\right)=\frac{2\pi}{3}$?
- 215. Даны вершины четырехугольника A(1;2;3), B(7;3;2), C(-3;0;6), D(9;2;4). Доказать, что его диагонали взаимно перпендикулярны.
- 216. Найти острый угол между диагоналями параллелограмма, построенного на векторах $\overline{a}(2;1;0)$ и $\overline{b}(0;-1;1)$.
- 217. Даны вершины треугольника A(4;1;0), B(2;2;1), C(6;3;1). Найти проекцию стороны AB на сторону AC.
- 218. * Вычислить длину диагоналей параллелограмма, построенного на векторах $\overline{a}=5\overline{p}+2\overline{q}$ и $\overline{b}=\overline{p}-3\overline{q}$, если известно, что $\left|\overline{p}\right|=2\sqrt{2}$, $\left|\overline{q}\right|=3$ и $\angle\left(\overline{p},\overline{q}\right)=\frac{\pi}{4}$.
- 219. * Даны силы $\bar{f}_1 = \bar{i} \bar{j} + \bar{k}$ и $\bar{f}_2 = 2\bar{i} + \bar{j} + 3\bar{k}$. Найти работу их равнодействующей при перемещении точки из начала координат в точку A(2;-1;-1).

- 220. * Вычислить угол между векторами $\overline{a}=3\overline{p}+2\overline{q}$ и $\overline{b}=\overline{p}-\overline{q}$, где $|\overline{p}|=1,\ |\overline{q}|=2$, $\angle(\overline{p},\overline{q})=\frac{\pi}{3}$.
- 221.* Найти проекцию вектора $\overline{a}(2;-3;4)$ на ось, составляющую с координатными осями равные острые углы.
- 222. * Найти вектор \overline{x} , перпендикулярный к векторам $\overline{a}=\overline{i}+\overline{k}$ и $\overline{b}=2\overline{j}-\overline{k}$, если известно, что его проекция на вектор $\overline{c}=\overline{i}+2\overline{j}+2\overline{k}$ равна 1.

Векторное произведение двух векторов и его простейшие приложения

- 223. Найти векторное произведение векторов $\stackrel{\mathbf{r}}{a} = 7\,\overset{\mathbf{i}}{i} + 2\,\overset{\mathbf{i}}{j} 3\,\overset{\mathbf{i}}{k}$ и $\overset{\mathbf{b}}{b} = 2\,\overset{\mathbf{i}}{i} 2\,\overset{\mathbf{j}}{j} + 4\,\overset{\mathbf{k}}{k}$ и его модуль.
- 224. Найти площадь треугольника с вершинами A(1; 2; 0), B(3; 0; -3), C(5; 2; 6).
- 225. Найти площадь параллелограмма, построенного на векторах $\overline{a} = \overline{p} + 2\overline{q} \ \text{и} \ \overline{b} = 2\overline{p} + \overline{q} \ \text{, если} \ \overline{p} \ \text{и} \ \overline{q} \ \text{- единичные векторы, а угол}$ между ними $\phi = \frac{\pi}{3}$.
- 226. Сила $\overline{F} = 3\overline{i} + 2\overline{j} 4\overline{k}$ приложена к точке M(2; -1; 1). Найти ее момент относительно начала координат.
- 227. Найти синус угла между векторами \overline{AB} и \overline{AC} , если A(1;3;5), B(7;0;2), C(1;3;2).
- 228. В треугольнике с вершинами A(3;5;6), B(6;1;0), C(3;7;8) найти длину высоты AM .

- 229. * Вычислить площадь параллелограмма, диагоналями которого служат векторы $3\overline{e}_1-4\overline{e}_2$ и $3\overline{e}_1+5\overline{e}_2$, где $\overline{e}_1,\overline{e}_2$ единичные векторы и $\angle \big(\overline{e}_1,\overline{e}_2\big)=\frac{\pi}{4}\,.$
- 230. * Даны три силы, приложенные к точке M(2;1;2): $\bar{f}_1=\bar{i}+\bar{j}+\bar{k}$, $\bar{f}_2=-2\bar{i}-3\bar{j}+\bar{k}$, $\bar{f}_3=\bar{i}-2\bar{j}+\bar{k}$. Найти момент их равнодействующей относительно точки A(0;-1;-1).
- 231. * Найти координаты вектора \overline{x} , если известно, что он перпендикулярен к векторам $\overline{a}_1(4;\,2;\,3)$ и $\overline{a}_2(1;\,1;\,1)$, образует тупой угол с ортом \bar{j} и $|\overline{x}|=13$.
- 232.* Найти координаты вектора \overline{x} , если он перпендикулярен к векторам $\overline{a}_1(2;-5;0)$ и $\overline{a}_2(-1;-3;1)$ и удовлетворяет условию $\overline{x}(3\overline{i}+2\overline{i}+3\overline{k})=13$.
- 233. * Найти синус угла между векторами $\overline{a}=\overline{m}+2\overline{n}$ и $\overline{b}=\overline{m}-\overline{n}$, где $\left|\overline{m}\right|=1\,,\,\left|\overline{n}\right|=1\,,\,\angle(\overline{m},\overline{n})=\frac{\pi}{3}\,.$
 - 3.7. Смешанное произведение трех векторов

и его приложения

- 234. Даны координаты вершин пирамиды $A_1(5;1;-4)$, $A_2(1;2;-1)$, $A_3(3;3;-4)$ и $A_4(2;2;2)$. Найти смешанное произведение векторов $\overline{A_1A_2}$, $\overline{A_1A_3}$ и $\overline{A_1A_4}$ и определить объём пирамиды, построенной на этих векторах.
- 235. Определить, какой является тройкой векторов \overline{a} , \overline{b} , \overline{c} (правой или левой), если: 1) $\overline{a} = \overline{k}$, $\overline{b} = \overline{i}$, $\overline{c} = \overline{j}$; 2) $\overline{a} = \overline{i}$, $\overline{b} = \overline{k}$, $\overline{c} = \overline{j}$; 3) $\overline{a} = \overline{i}$, $\overline{b} = \overline{i}$, $\overline{c} = \overline{k}$.

- 236. Вектор \overline{c} перпендикулярен к векторам \overline{a} и \overline{b} , причем $\angle \left(\overline{a}, \overline{b}\right) = 30^{0}$. Зная, что $|\overline{a}| = 6$, $|\overline{b}| = 3$, $|\overline{c}| = 3$, вычислить $\left(\overline{a} \ \overline{b} \ \overline{c}\right)$.
- 237. Установить, компланарны ли векторы \overline{a} , \overline{b} , \overline{c} , если:
 - 1) $\overline{a}(2; 3; -1)$, $\overline{b}(1; -1; 3)$, $\overline{c}(1; 9; -11)$;
 - 2) $\overline{a}(3; -2; 1)$, $\overline{b}(2; 1; 2)$, $\overline{c}(3; -1; -2)$.
- 238. Доказать, что точки A(1;0;7), B(-1;-1;2), C(2;-2;2), D(0;1;9) лежат в одной плоскости.
- 239. Найти объем параллелепипеда, построенного на векторах $\overline{a} = \overline{i} 2\overline{j} + \overline{k} \;, \quad \overline{b} = 3\overline{i} + 2\overline{j} + \overline{k} \;, \quad \overline{c} = \overline{i} \overline{k} \;. \;\; \text{Установить, какой}$ тройкой правой или левой являются вектора \overline{a} , \overline{b} , \overline{c} .
- 240. * Даны вершины тетраэдра O(-5;-4;8), A(2;3;1), B(4;1;-2), C(6;3;7). Найти длину h высоты, опущенной из вершины O на грань ABC.
- 241. * Объем тетраэдра V=5, три его вершины находятся в точках $A(2;1;-1),\ B(3;0;1),\ C(2;-1;3).$ Найти координаты четвертой вершины D, если известно, что она лежит на оси Oy.
- 242. * Доказать компланарность векторов \overline{a} , \overline{b} , \overline{c} , если $\left[\overline{a},\overline{b}\right]+\left[\overline{b},\overline{c}\right]+\left[\overline{c},\overline{a}\right]=0$.
- $\overline{a}=3\overline{m}+5\overline{n}\;,\;\;\;\overline{b}=\overline{m}-2\overline{n}\;,\;\;\;\overline{c}=2\overline{m}+7\overline{n}\;,\;\;$ где $|\overline{m}|=rac{1}{2}\;,\;\;$ $|\overline{n}|=3\;,\;\;\angle(\overline{m},\overline{n})=135^0\;.$
- 244. * Вычислить проекцию вектора $\overline{a}=3\overline{p}-12\overline{q}+4\overline{r}$ на ось, имеющую направление вектора $\overline{b}=\left[\left(\overline{p}-2\overline{r}\right)\!\left(\overline{p}+3\overline{q}-4\overline{r}\right)\right]$, если $\overline{p},\overline{q},\overline{r}$ взаимно перпендикулярные орты.

3.8. Прямая на плоскости

- 245. Написать уравнение прямой, проходящей через точку $M_0(4;6)$ и отсекающей от осей координат треугольник площадью, равной 6 ед².
- 246. Показать, что прямые 2x-7y+5=0 и 21x+6y-2=0 перпендикулярны.
- 247. Определить острый угол между прямыми 5x-y+7=0 , 2x-3y+1=0 .
- 248. Определить расстояние между параллельными прямыми 3x-4y-6=0 и 6x-8y+28=0 .
- 249. Найти длину высоты AD в треугольнике с вершинами A(5;2), B(2;3) и C(0;-3).
- 250.* Даны стороны треугольника AB: x + 3y 7 = 0,
 - BC: 4x-y-2=0, AC: 6x+8y-35=0. Найти длину высоты, проведённой из вершины B.
- 251.* Даны вершины треугольника: A(1;1), B(10;13), и C(13;6). Составить уравнение биссектрисы угла A.
- $252.^*$ Составить уравнение гипотенузы прямоугольного треугольника, проходящей через точку $M_0(2;3)$, если катеты треугольника расположены на осях координат, а площадь треугольника равна $12\ {\rm eq}^2.$
- 253.* Дана вершина треугольника A(3;9) и уравнения медиан: y-6=0 и 3x-4y+9=0 . Найти координаты двух других вершин.
- 254.* Даны две противоположные вершины квадрата A(1;3) и C(-1;1). Найти координаты двух его вершин и написать уравнения его сторон.
 - 3.9. Различные виды задания уравнений плоскости

в пространстве. Прямая в пространстве. Взаимное расположение плоскостей

255. Написать уравнение плоскости, проходящей через ось 0z и точку B(2;-4;3).

- 256. Написать уравнение плоскости, проходящей через точку A(2;3;-1) параллельно плоскости 5x-3y+2z-10=0.
- 257. Вычислить угол между плоскостями $x-y\sqrt{2}+z-1=0$, $x+y\sqrt{2}-z+3=0$.
- 258. Написать уравнение плоскости, проходящей через точку A(-1;-1;2) и перпендикулярной к плоскостям x-2y+z-4=0 и x+2y-2z+4=0 .
- 259. Составить уравнение плоскости, проходящей через точку A(5;4;3) и отсекающей равные отрезки на осях координат.
- $260.^*$ Написать уравнение плоскости, проходящей через точки $\mathbf{M}_1ig(-1;-2;0ig)$ и $\mathbf{M}_2ig(1;1;2ig)$ и перпендикулярной к плоскости $\mathbf{x}+2\mathbf{y}+2\mathbf{z}-8=0$.
- 261. Найти расстояние от точки $M_0ig(5;1;-1ig)$ до плоскости x-2y-2z+4=0 .
- $262.^*$ Вычислить угол между плоскостями, проходящими через точку B(1;-1;-1), одна из которых содержит ось 0x, а другая ось 0z.
- 263.* Составить уравнение плоскости, проходящей через точку $\mathbf{M}_0(0;2;1)$ и параллельной векторам $\overset{\mathbf{I}}{\mathbf{a}} = (1;1;1)$ и $\overset{\mathbf{I}}{\mathbf{b}} = (1;1;-1)$.
- $264.^*$ Из точки B(2;3;-5) на координатные оси опущены перпендикуляры. Составить уравнение плоскости, проходящей через их основания.
- 265. Найти угол между прямой $\begin{cases} x = 2z 1 \\ y = -2x + 1 \end{cases}$ и прямой, проходящей через начало координат и точку A(1;-1;-1).

266. Уравнение прямой
$$\begin{cases} 2x-y+3z-1=0\\ 5x+4y-z-7=0 \end{cases}$$
 привести к каноническому виду.

- 267. Составить уравнение прямой, проходящей через точку $M_0(3;2;-1)$ и пересекающей ось 0x под прямым углом.
- 268. Написать уравнение плоскости, проходящей через прямую $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{2} \qquad \text{и перпендикулярной к плоскости} \\ 2x+3y-z+7=0 \, .$
- 269. Написать уравнение перпендикуляра, опущенного из точки $\mathbf{M}(2;-8;4)$ на ось $0\mathbf{z}$.
- $270.^*$ Найти проекцию точки Mig(3;1;-1ig) на плоскость x+2y+3z-30=0 .
- 271.* Найти проекцию точки M(2;3;4) на прямую x=y=z .
- 272.* Написать уравнение перпендикуляра, опущенного из точки A(1;0;-1) на прямую $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z}{-3}$.
- 273.* Найти уравнение проекции прямой $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$ на плоскость x+y+2z-5=0.
- 274.* Найти кратчайшее расстояние между двумя скрещивающимися прямыми

$$\frac{x-9}{4} = \frac{y+2}{-3} = \frac{z}{1}$$
 и $\frac{x}{-2} = \frac{y+7}{9} = \frac{z-2}{2}$.

 Канонические уравнения кривых 2-го порядка (эллипс, гипербола, парабола)

- 275. Составить простейшее уравнение эллипса, зная, что большая полуось равна 10 и эксцентриситет e=0.8.
- 276. Расстояния от одного из фокусов эллипса до концов его большой оси соответственно равны 7 и 1. Составить уравнение этого эллипса.
- 277. Составить уравнение гиперболы, оси которой совпадают с осями координат, зная, что действительная полуось равна 5 и вершины делят расстояние между центром и фокусами пополам.
- 278. Составить уравнение гиперболы, оси которой совпадают с осями координат, зная, что расстояние между фокусами равно 10, а эксцентриситет e=1,25.
- 279. Составить уравнение параболы, зная, что она симметрична относительно оси 0y, фокус находится в точке (0;2) и вершина совпадает с началом координат.
- $280.^*$ В эллипс $\frac{x^2}{49} + \frac{y^2}{24} = 1$ вписан прямоугольник, две противоположные стороны которого проходят через фокусы. Вычислить площадь этого прямоугольника.
- $281.^*$ Написать уравнение гиперболы, проходящей через фокусы эллипса $\frac{x^2}{169} + \frac{y^2}{144} = 1$ и имеющей фокусы в вершинах эллипса.
- 282.* Зная уравнение асимптот гиперболы $y=\pm \frac{1}{2}x$ и одну из точек $M(12;3\sqrt{3})$, составить уравнение гиперболы.
- 283.* На параболе $y^2 = 4.5x$ взята точка M(x;y), находящаяся от директрисы на расстоянии d = 9.125. Вычислить расстояние этой точки от вершины параболы.
- $284.^*$ Найти уравнение окружности, проходящей через точки пересечения параболы $y^2 = 4 + x$ с осями координат.

3.11. Взаимное расположение кривых и прямых

на плоскости

- 285. Найти точки пересечения эллипса $\frac{x^2}{36} + \frac{y^2}{12} = 1$ с прямой 2x y 9 = 0.
- 286. Известно, что прямая 4x 5y 40 = 0 касается эллипса $\frac{x^2}{50} + \frac{y^2}{32} = 1$. Найти точку их касания.
- 287. Через точку (2;-5) провести прямые, параллельные асимптотам гиперболы $x^2-4y^2=4$.
- 288. Известно, что прямая 2x + y 18 = 0 касается гиперболы $\frac{x^2}{90} \frac{y^2}{36} = 1$. Найти точку их касания.
- 289. Найти точки пересечения параболы $y^2 = 18x$ с прямой 6x + y 6 = 0 .
- $290.^*$ Задан эллипс $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Найти длину его диаметра, направленного по биссектрисе координатного угла.
- $x^2+y^2+4x-6y-17=0$, перпендикулярно к прямой 5x+2y-13=0 .
- $292.^*$ Составить уравнение прямой, проходящей через правый фокус кривой $x^2+4x+4y^2-8y-4=0 \ , \qquad \qquad$ параллельно прямой $9x-2y+5=0 \ .$
- $293.^*$ Вычислить площадь треугольника, образованного асимптотами гиперболы $\frac{x^2}{4}-\frac{y^2}{9}=1$ и прямой 9x+2y-24=0 .

- $294.^*$ Пусть A_- вершина параболы $y=x^2+6x+5$, B_- точка пересечения параболы с осью 0y. Найти уравнение перпендикуляра, восстановленного из середины отрезка AB.
 - 3.12. Алгебраические поверхности 2-го порядка
- 295. Определить тип поверхности 2-го порядка

$$x^{2} + y^{2} + z^{2} - 6x + 8y + 2z + 10 = 0$$
,

найти основные параметры.

296. Определить тип поверхности 2-го порядка

$$x^2 + 4x + 4y^2 - 8y + 16z^2 + 32z + 8 = 0$$

найти основные параметры.

297. Определить тип поверхности 2-го порядка

$$2x^2 - 4x + y^2 + 6y - 4z^2 + 16z - 21 = 0$$
,

найти основные параметры.

298. Определить тип поверхности 2-го порядка

$$x^2 - 6x + 9y^2 + 36y - 3z^2 + 6z + 51 = 0$$
,

найти основные параметры.

299. Определить тип поверхности 2-го порядка

$$x^2 + 8x + 2y^2 - 8y - 4z^2 + 4 = 0$$

найти основные параметры.

 $300.^*$ Найти отношение осей двух параллельных сечений эллипсоида $\frac{x^2}{25} + \frac{y^2}{9} + \frac{z^2}{4} = 1$, а именно сечения плоскостью x0z и плоскостью, отстоящей от неё на расстоянии 2-х единиц.

- $301.^*$ Задан однополостной гиперболоид $\frac{x^2}{36} + \frac{y^2}{16} \frac{z^2}{4} = 1$. Найти линии его пересечения с координатной плоскостью y0z и плоскостью, отстоящей от неё на расстоянии 3-х единиц.
- $302.^*$ Найти проекцию на плоскость x0y линии пересечения эллипсоида $\frac{x^2}{16} + \frac{y^2}{4} + z^2 = 1$ и плоскости x + 4z 4 = 0 .
- $303.^*$ Найти отношение осей двух параллельных сечений двуполостного гиперболоида $\frac{x^2}{6} + \frac{y^2}{8} \frac{z^2}{4} = -1$, а именно сечения плоскостью x0z и плоскостью, отстоящей от неё на расстоянии 4-х единиц.
- $304.^*$ Отношение осей двух параллельных сечений эллиптического параболоида $z=\frac{x^2}{4}+\frac{y^2}{2}$ равно 2. Найти уравнение большего сечения, если уравнение меньшего будет z=2.

ГЛАВА 4. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

4.1. Числовая последовательность, её свойства.

Предел числовой последовательности

- 305. Найти сумму третьего, шестого и девятого членов последовательности $\left\{a_n\right\},$ если $a_n=\frac{1}{n^2}$.
- 306. Записать формулу n-го члена последовательности $\left\{a_n\right\} = \left\{-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \ldots\right\}.$
- 307. При каких n будет справедливо неравенство $\frac{2}{3} a_n < 10^{-3}$, где $a_n = \frac{2n-1}{3n}$?
- 308. Записать формулу n-го члена последовательности $\left\{a_n\right\} = \left\{\frac{2}{3}, \frac{1}{4}, \frac{4}{5}, \frac{3}{6}, \frac{6}{7}, \ldots\right\}$.
- 309. При каких n будет справедливо неравенство $1,25-a_n<10^{-2}$, где $a_n=\frac{5n-1}{4n}\,?$
- 310. При каких n будет справедливо неравенство $\left|a_n-0.5\right|<0.01$, где $a_n=\frac{3n+2}{6n-3}?$
- 311. Доказать, что последовательность 2,4,6,8,... не ограничена сверху.
- 312. Доказать, что последовательность $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$ ограничена и найти одну её верхнюю и одну нижнюю границы.

313. Какие из следующих последовательностей $\left\{a_{n}\right\}$ ограничены, если: 1)

$$a_n = \frac{n+2}{n}$$
; 2) $a_n = \ln n$;

3)
$$a_n = (-1)^n$$
; 4) $a_n = n^2 + 5n$;

5)
$$a_n = \sin n$$
; 6) $a_n = 2^n$;

7)
$$a_n = \frac{n^2 + 3}{n}$$
; 8) $a_n = \frac{4 + (-1)^n}{n}$?

314. Доказать, что последовательность $\left\{a_{n}\right\}$ строго возрастает, если $a_{n}=3n-2$.

315. Доказать, что последовательность $\{a_n\}$ строго убывает, если $a_n = \frac{1}{n^3}$.

316. Доказать, что последовательность $\left\{a_{n}\right\}$ строго возрастает, если $a_{n}=\ln n$.

317. Доказать, что последовательность $\left\{a_n\right\}$ строго убывает, если $a_n=3^{-n}$.

318. Какие из следующих последовательностей $\{a_n\}$ монотонные, если:

1)
$$a_n = 4n + 2$$
; 2) $a_n = \frac{(-1)^n}{2^n}$; 3) $a_n = n - \ln n$;

4)
$$a_n = \sin n$$
; 5) $a_n = \frac{1}{n^2}$; 6) $a_n = \frac{n + (-1)^n}{n+1}$?

В следующих заданиях вычислить пределы.

319.
$$\lim_{n \to \infty} \frac{(n+7)^3}{n^3}$$
. 320. $\lim_{n \to \infty} \frac{4^n + 2}{4^{n-1} - 2}$.

321.
$$\lim_{n\to\infty} \frac{1+2+3+...+n}{3n^2+1}$$
.

322.
$$\lim_{n\to\infty} \frac{(n+1)^3}{(2n^2+5)(n+1)}$$
.

323.
$$\lim_{n\to\infty} \frac{4n^2+7}{n^3+1}$$
.

324.
$$\lim_{n\to\infty} \frac{n^4 + 2n}{8n^3 - n + 5}$$
.

325.
$$\lim_{n\to\infty} \frac{\sqrt{n+1} + \sqrt{4n+5}}{\sqrt{n+8}}$$
.

326.
$$\lim_{n\to\infty} \left(\frac{n+1}{n+3}\right)^n$$
.

327.
$$\lim_{n \to \infty} \left(\frac{n^2 + 4}{n^2 + 1} \right)^{n^2}$$
.

328.
$$\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+8} - \sqrt{n+1} \right).$$

329. * Найти сумму первых четырёх членов последовательности $\left\{a_n\right\}$, если

$$a_n = \arcsin\left(\left(-1\right)^n \frac{\sqrt{n}}{2}\right).$$

330.* Найти сумму первых четырёх членов последовательности $\{a_n\}$, если

$$a_n = \arccos\left((-1)^{n+1} \frac{\sqrt{n}}{2}\right).$$

331.* Доказать, что следующие последовательности ограничены, если: 1) $a_n = \sqrt{n^2 + 1} - n \; ; 2) \; a_n = \ln (n+1) - \ln n \; ;$

3)
$$a_n = \frac{3n^2 + 1}{n^2 + 1}$$
.

332.* Исследовать на монотонность следующие последовательности $\{a_n\},$

если: 1)
$$a_n = -\frac{3^n}{n}$$
; 2) $a_n = \frac{1}{1+a}$, $a_1 = 1$;

3)
$$a_n = \left(\frac{n+3}{n+1}\right)^n$$
; 4) $a_n = \frac{\cos n}{n}$.

Вычислить пределы.

$$333.^{*} \lim_{n \to \infty} \frac{(2+n)^{100} - n^{100} - 200n^{99}}{n^{98} - 10n^{2} + 1}.$$

$$334.^{*} \lim_{n \to \infty} \frac{\lg(n^{2} + 3n + 1)}{1 + \lg(n + 1)}. \qquad 335.^{*} \lim_{n \to \infty} \frac{\ln(n^{2} - n + 1)}{\ln(n^{10} + n + 1)}.$$

$$336.^{*} \lim_{n \to \infty} \frac{\sqrt{n^{2} + 3n + 1} - \sqrt{n^{2} + 3n - 1}}{\ln(1 + n) - \ln(2 + n)}.$$

$$\lim_{n \to \infty} \left(\frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \mathbf{L} + \frac{1}{(3n+1)(3n+4)} \right).$$

338.*
$$\lim_{n\to\infty} \left(\sqrt[3]{n+2} - 2\sqrt[3]{n+1} + \sqrt[3]{n} \right)$$
.

4.2. Область определения,

множество значений, классификация и график функции.

Элементарные функции и их графики

339. Найти области определения указанных функций.

1)
$$y = \sqrt{9 - x^2}$$
; 2) $y = \sqrt{4x - x^2}$;

3)
$$y = \sqrt{-x} + \sqrt{3+x}$$
; 4) $y = \arcsin \frac{x-1}{4}$;

5)
$$y = \sqrt{2 \sin x}$$
; 6) $y = \frac{3}{1 + \sqrt{x^2 - 8}}$;

7)
$$y = \log_7(3x+1)$$
; 8) $y = \sqrt[8]{x^2 - 5x + 6}$;

9)
$$y = e^{\sin x}$$
; 10) $y = \arccos(x-2) - \ln(x-2)$.

340. Найти множества значений указанных функций.

1)
$$y = x^2 + 4x + 1$$
; 2) $y = 2^{x^2}$; 3) $y = 3 + \cos x$;

4)
$$y = 5^{-x^2}$$

5)
$$y = 3\sin x - 8$$
;

4)
$$y = 5^{-x^2}$$
; 5) $y = 3\sin x - 8$; 6) $y = 5 + \frac{1}{x}$;

7)
$$y = \sqrt{1-x} + 4$$
: 8) $y = 8x - x^2 - 20$.

8)
$$y = 8x - x^2 - 20$$

341. Какие из следующих функций четные, какие нечетные, а какие – общего вила:

1)
$$y = \frac{\sin 2x}{x}$$
; 2) $y = 7x^5 + x^3 - 3x$; 3) $y = |x| + 5\cos x$;

4)
$$y = tg(\sqrt{3}x)$$
; 5) $y = \frac{8}{x^2 + 0}$; 6) $y = -x + \sqrt{x}$;

$$6) y = -x + \sqrt{x}$$

7)
$$v = x + e^x$$
:

8)
$$y = \frac{|x|}{x} + x^3$$
;

9)
$$y = \sin^2 7x \cdot \cos 3x$$
;

9)
$$y = \sin^2 7x \cdot \cos 3x$$
; 10) $y = x^2 \cdot \text{ctg}(\sqrt{2}x)$?

342. Определить, является ли данная функция периодичной. Если да, то найти её наименьший период.

1)
$$y = \cos 6x$$
:

2)
$$v = \sin^2 2x$$
:

3)
$$y = tg \frac{x}{5}$$
;

4)
$$y = \sin 2x + \cos 3x$$
;

5)
$$y = \sin(\sqrt{2}x)$$
;

6)
$$y = x + \cos x$$
;

7)
$$y = x^2 \cdot \sin 2x$$
;

7)
$$y = x^2 \cdot \sin 2x$$
; 8) $y = [x]$ – целая часть x ;

9)
$$y = x - [x]$$
;

10)
$$y = \sin(\sqrt{3}x) + \cos x$$
.

343. Построить графики следующих функций:

1)
$$y = |x+1| + |x-1|$$
; 2) $y = |x^2-1|$;

2)
$$y = |x^2 - 1|$$

3)
$$y = \frac{x-1}{x-2}$$
;

4)
$$y = -2^x$$
;

$$5) y = \left(\frac{1}{2}\right)^{|x|};$$

 $6) y = -\log_2 x;$

7)
$$y = |\log x|$$
;

8) $y = \ln |x|$.

344.* Найти область определения функции

$$y = \frac{\sqrt{9.6 + 0.2x - x^2}}{\sin x} \, .$$

- 345.* Найти множество значений функции $y = \log_{0.5} (\sin x + 5)$.
- 346.* Найти множество значений функции $y = \log_3(x |x| + 3)$.
- 347.* Найти множество значений функции $y = 0.5^{\frac{12}{3-\sin x}}$.
- 348.* Построить графики следующих функций:

1)
$$y = (|x|-1)(x+1);$$
 2) $y = sign(cos x);$

3)
$$y = \operatorname{arctg} \frac{1}{x}$$
; 4) $y = \ln \left(\frac{|x|}{x+2} \right)$.

- 4.3. Сравнение бесконечно малых и бесконечно больших функций. Вычисление пределов с помощью эквивалентных бесконечно малых функций
- 349. Определить порядок бесконечно малых при $x \to 0$ функций: 1) $y = 2\sin^4 x x^5$: 2) $y = \sqrt{\sin^2 x + x^4}$:

3)
$$y = \sqrt{1 + x^3} - 1$$
; 4) $y = \sin 2x - 2\sin x$;

5)
$$y = 1 - 2\cos\left(x + \frac{\pi}{3}\right)$$
.

350. Доказать, что функции f(x) и g(x) при $x \to 0$ являются бесконечно малыми одного порядка малости:

1)
$$f(x) = arctg^2 3x$$
, $g(x) = 4x^2$;

2)
$$f(x) = \frac{3x}{1-x}$$
, $g(x) = \frac{x}{x+4}$;

3)
$$f(x) = 3\sin^2 4x$$
, $g(x) = x^2 - x^4$;

4)
$$f(x) = \cos 3x - \cos 5x$$
, $g(x) = x \sin 2x$.

Вычислить пределы, используя эквивалентные бесконечно малые функции.

$$351. \lim_{x \to 0} \frac{\ln \left(1 + 3x^2\right)}{x^3 - 5x^2}. \quad 352. \lim_{x \to 0} \frac{\arcsin 5x}{tg3x} \, . \, 353. \lim_{x \to 0} \frac{e^{2x} - 1}{tg4x} \, .$$

354.
$$\lim_{x \to 0} \frac{2^{3x} - 1}{\operatorname{arctgx}}$$
. 355. $\lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}$. 356. $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}$.

357.
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{\pi - 4x}$$
. 358. $\lim_{x \to 2} \frac{e^x - e^2}{(x - 4)e^x + xe^2}$.

359.* Найти главные части вида $\operatorname{Cx}^{\alpha}$ при $\operatorname{x} \to 0$ следующих функций: 1) $y = (1 + 2x)^3 - (1 + 3x)^2$:

2)
$$y = \sqrt{1 - 2x - 4x^2} + x - 1;$$
 3) $y = \ln \cos \pi x;$

3)
$$y = \ln \cos \pi x$$
;

4)
$$y = a^x - b^x$$
;

5)
$$y = 1 + \sin 5x - \cos 5x$$
.

 $360.^*$ Найти главные части вида $\,C (1-x)^{\!lpha}\,$ при $\,x o 1\,$ следующих функций:

1)
$$y = x^3 + 5x^2 - 3x - 3$$
; 2) $y = 3 \cdot 2^x - 2 \cdot 3^x$.

Вычислить пределы, используя эквивалентные бесконечно малые функции

$$361.^* \lim_{x \to 0} \frac{\operatorname{tgx} - \sin x}{x^3}. \qquad 362.^* \lim_{x \to 0} \frac{2 - 2\cos 2x - \sin^2 2x}{x^4}.$$

$$363 \cdot \lim_{x \to \infty} \left(x - \frac{\pi}{x} \right) \cdot t\sigma^2 x$$

$$363.^* \lim_{x \to \frac{\pi}{4}} \left(x - \frac{\pi}{4} \right) \cdot tg2x . \qquad 364.^* \lim_{x \to 1} \frac{\cos \frac{3\pi x}{2}}{\ln \left(2x - \sqrt[7]{x} \right)}.$$

$$\lim_{x \to 1} \frac{\cos 2\pi x + \cos \pi x}{\ln(x^2 - 2x + 2)}$$

$$366.^* \lim_{x \to 0} \frac{\ln(1+x-x^2) + \arcsin 2x - 3x^3}{\sin 3x + tg^2x + (e^x - 1)^{10}}.$$

$$367.^* \lim_{x \to \alpha} \left(2 - \frac{x}{\alpha} \right)^{\cot \frac{\pi x}{\alpha}} . 368^* . \lim_{x \to 1} x^{\cot \frac{\pi x}{2}} .$$

$$369^*$$
. $\lim_{x\to 0} (3^x + x)^{\frac{1}{\sin x}}$.

4.4. Предел функции в точке. Раскрытие неопределенностей Найти пределы.

370.
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$
.

371.
$$\lim_{x \to 2} \frac{x^2 - 5x - 6}{x^2 - 12x + 20}$$
.

372.
$$\lim_{x \to 5} \frac{2x^2 - 11x + 5}{2x^2 - 14x - 5}$$

372.
$$\lim_{x \to 5} \frac{2x^2 - 11x + 5}{3x^2 - 14x - 5}$$
. 373. $\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$.

374.
$$\lim_{x \to 0} \frac{3x^3 + 2x^2 - x}{5x}$$
. 375. $\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x}$.

375.
$$\lim_{x \to 3} \frac{x^2 - 2x + 1}{3}$$
.

376.*
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$
.

377.*
$$\lim_{x\to 2} \left(\frac{1}{x(x-2)^2} - \frac{1}{x^2 - 3x + 2} \right)$$
.

378.*
$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$$
 при $m, n \in \mathbb{N}$.

379.*
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x^2}$$
.

380.*
$$\lim_{h\to 0} \frac{\sqrt[3]{x+h} - \sqrt[3]{x}}{x}$$
.

381. *
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}$$
.

382.*
$$\lim_{x \to \infty} \left(x + \sqrt[3]{1 - x^3} \right)$$
.

Найти односторонние пределы.

383.*
$$\lim_{x\to 0-0} \arctan \frac{1}{x}$$
. 384.* $\lim_{x\to -1+0} 3^{\frac{1}{x+1}}$. 385.* $\lim_{x\to -1-0} 3^{\frac{1}{x+1}}$.

386.*
$$\lim_{x \to 3-0} 5^{\frac{1}{x-3}}$$
. 387.* $\lim_{x \to 3+0} 2^{\frac{1}{x-3}}$. 388.* $\lim_{x \to 0+0} \operatorname{arcctg} \frac{1}{x}$.

4.5. Первый и второй замечательные пределы

Найти пределы.

389.
$$\lim_{x\to 0}\frac{\sin\alpha x}{\sin\beta x}.$$

390.
$$\lim_{x\to 0} \frac{\operatorname{tg}2x}{\sin 5x}$$
.

391.
$$\lim_{x\to 0} \frac{2\arcsin x}{3x}.$$

392.
$$\lim_{x \to 0} \frac{2x - \arcsin x}{2x + \operatorname{arctgx}}.$$

$$393. \lim_{x\to 0} \frac{\sin x^2}{x}.$$

394.
$$\lim_{x\to 0} \frac{\sin 7x - \sin 2x}{\sin x}$$
.

395. *
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

396.*
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}$$

$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x}$$

$$398. * \lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \operatorname{tg} x.$$

399. *
$$\lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x^3}$$
. 400. $\lim_{x\to \infty} \left(\frac{x}{x+1}\right)^x$.

401.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\frac{x+1}{x}}$$
. 402. $\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^{mx}$.

403.
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{2x}$$
. 404. $\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x^2}$.

405.
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x$$
. $406.^* \lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x-1}$.

$$407. \lim_{x \to \infty} \left(\frac{3x - 4}{3x + 2} \right)^{\frac{x+1}{3}} \cdot 408. \lim_{x \to 0} (1 + \sin x)^{\cos ec x}.$$

$$409.* \lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2} \right)^x. \qquad 410.* \lim_{x \to \frac{\pi}{2}} (\sin x) \frac{1}{\cot x}.$$

4.6. Непрерывность функции в точке.

Непрерывность в точке слева и справа.

Точки разрыва и их классификация

Исходя из определения, доказать непрерывность функций.

411.*
$$v = x^2 + x - 2$$
 при $x \in R$.

412.*
$$y = x^3 - 2x + 4$$
 при $x \in R$.

413.*
$$y = \frac{1}{x+1}$$
 при $x \neq -1$. 414.* $y = \frac{1}{x^2+1}$ при $x \in R$.

Исследовать на непрерывность функцию f(x) и указать тип ее точек разрыва.

415.*
$$f(x) = \frac{x^2}{}$$
.

416.*
$$f(x) = e^{-\frac{1}{x}}$$
.

$$417.^* f(x) = \begin{cases} x, x \le 1, \\ \ln x, x > 1. \end{cases} \qquad 418.^* f(x) = \frac{1}{x^2 - 4}.$$

418.*
$$f(x) = \frac{1}{x^2 - 4}$$

419.*
$$f(x) = arctg \frac{1}{x}$$
.

$$420.* f(x) = \frac{|x-3|}{|x-3|}$$

$$421.^{*} f(x) = \begin{cases} -\frac{1}{2}x^{2}, x \leq 2, & 422.^{*} f(x) = \begin{cases} 2x + 5, x < -1, \\ \frac{1}{x}, 1 \leq x. \end{cases}$$

ГЛАВА 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Бычисление производной функции

Найти производные заданных функций.

423.
$$y = x^5 + 2x^3 - \frac{1}{8}x$$
. 424. $y = \sqrt[4]{x} - \frac{3}{x^2}$.

425.
$$y = tgx + 2ctg x$$
. 426. $y = x\sqrt{x} + e^2$.

427.
$$y = x^3 \log_2 x$$
. 428. $y = \frac{1 - \sqrt{x}}{1 + \sqrt{y}}$.

429.
$$y = (\sqrt{x} + 1) \arcsin x$$
. 430. $y = \ln \cos x$.

431.
$$y = 7^{3x-1}$$
. 432. 10. $y = arctg^2x$.

433.
$$y = \sqrt[3]{2x^2 + 4x - 3}$$
. 434. $y = \sqrt[5]{x} \cdot e^{4x}$.

435. 13.
$$y = \ln(x + \sqrt{x^2 + 1})$$
. 436. $y = \frac{\sin 2x}{\tan x}$.

437.
$$y = \frac{x + e^{3x}}{x - e^{3x}}$$
. 438. $y = \arccos \sqrt{x}$.

439.
$$y = 10^x \sin 6x$$
. 440. 18. $y = x^x$.

441.
$$y = x^{\ln x}$$
. 442. $y = (\sin x)^x$.

443.*
$$y = \arcsin e^{-4x} + \ln \left(e^{4x} + \sqrt{e^{8x} - 1} \right)$$
.

444.*
$$y = \sqrt{\frac{tgx + \sqrt{2tgx} + 1}{tgx - \sqrt{2tgx} + 1}}$$
. $445.* y = \frac{2^{x} (\sin x + \cos x \ln 2)}{1 + (\ln 2)^{2}}$.

$$446.^* y = \frac{2}{x-1} \sqrt{2x-x^2} + \ln \frac{1+\sqrt{2x-x^2}}{x-1}.$$

447.*
$$y = x^{2x} \cdot 5^{x}$$
. 448.* $y = (\cos 5x)^{e^{x}}$.

- Геометрический и механический смысл производной.
 Уравнения касательной и нормали к графику функции
- 449. Найти угловой коэффициент касательной к графику функции $f\left(x\right) = \frac{1-2x}{4x+1},$ проведённой в точке с абсциссой $\left(-0.5\right)$.
- 451. Составить уравнение касательной к графику функции $y = 2x^2 + x 4$ в точке с абсциссой $x_0 = -2$.
- 452. Составить уравнение касательной к графику функции $y=\frac{x^3+1}{x^4+1}$ в точке с абсциссой $x_0=1$.

- 453. Составить уравнение нормали к графику функции $y=6\sqrt[3]{x}-\frac{16\sqrt[4]{x}}{3}$ в точке с абсциссой $x_0=1$.
- 454. Составить уравнение нормали к графику функции $y = x^2 8x + 5$ в точке с абсциссой $x_0 = 4$.
- 455. Точка движется по прямой так, что её расстояние S от начального пункта через t секунд равно $S = \frac{1}{4}t^4 4t^3 + 16t^2$. В какие моменты её скорость равна нулю?
- 456. Количество электричества, протёкшее через проводник начиная с момента времени t=0, даётся формулой $Q=2t^2+3t+1$. Найти силу тока в конце пятой секунды.
- 457.* Хорда параболы $y=x^2-2x+5$ соединяет точки с абсциссами $x_1=1, \quad x_2=3$. Составить уравнение касательной к параболе, параллельной хорде.
- 458.* Составить уравнение нормали к линии $y = -\sqrt{x} + 2$ в точке её пересечения с биссектрисой первого координатного угла.
- 459.* Провести касательную к гиперболе $y = \frac{x+9}{x+5}$ так, чтобы она прошла через начало координат.
- $460.^*$ Тело массой 4 кг движется прямолинейно по закону $x=t^2+t+1.$ Определить кинетическую энергию в момент времени t=5 .
 - 5.3. Производная неявной функции
 Найти производную функции у, заданной неявно.

461.
$$e^{xy} - \cos(x^2 + y^2) = 0$$
. 462. $x^2 + y^2 = \ln \frac{y}{x} + 7$.

463.
$$x^4 - y^4 = x^2 y^2$$
.

Найти производные функций, заданных неявно в точке X_0 .

464.
$$e^y = e - xy$$
, $x_0 = 0$. 465. $\frac{x^2}{4} + \frac{y^2}{9} = 1$, $x_0 = \sqrt{2}$.

466.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
, $x_0 = \frac{a}{4}$. 467. $x^3 + y^3 - 3xy = 0$, $x_0 = 1$.

$$468.^* x^4 + y^4 = 4x^2y^2$$
, $x_0 = 1.469.^* 2y \ln y = x$, $x_0 = 0$.

$$470.^* \cos(xy) = x$$
, $x_0 = 0.5$. $471.^* y = x + \operatorname{arctg} y$, $x_0 = 0$.

472.*
$$y = 1 + xe^y$$
, $x_0 = 0$. 473.* $y = \cos(x + y)$, $x_0 = \frac{\pi}{2}$.

Найти производную функции У, заданной неявно, указанного порядка.

$$474.^* y^3 + x^3 - 3axy = 0, y'' = ?$$
 $475.^* y = sin(x + y), y'' = ?$

476.*
$$e^y + xy = e$$
, найти $y''(x)$ при $x = 0$.

$$477.^* x^2 + y^2 = r^2, y''' = ?$$

Найти производные y_{xx}'' функции, заданной неявно.

$$478.^* 2^x + 2^y = 2^{x+y}. 479.^* \cos \frac{y}{x} = y.$$

$$480.^* y^2 - 2xy + a^2 = 0. 481.^* y^3 - 3y + 2ax = 0.$$

482.*
$$y \cos x = \sin y$$
. 483.* $y = e^{xy}$.

5.4. Производная обратной функции.

Производная функции, заданной параметрически

484. Найти производную функции $y = \arcsin x$ с помощью теоремы о производной обратной функции.

485. Найти производную функции $y = \log_2 x$ с помощью теоремы о производной обратной функции.

Найти производную y_x' .

486.
$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t. \end{cases}$$
487.
$$\begin{cases} x = e^{t} \sin t, \\ y = e^{t} \cos t. \end{cases}$$
488.
$$\begin{cases} x = t^{3} + t, \\ y = t^{2} + t + 1. \end{cases}$$
B TOUKE $t_{0} = 1$.
489.
$$\begin{cases} x = \sqrt{t - 1}, \\ y = \sqrt[3]{t} \end{cases}$$

Найти производные первого и второго (*) порядка функций, заданных параметрически.

490.
$$\begin{cases} x = 1 - t^2, \\ y = t - t^3. \end{cases}$$
491.
$$\begin{cases} x = (t+1)t^{-1}, \\ y = (t-1)t^{-1}. \end{cases}$$
492.
$$\begin{cases} x = a \cos t, \\ y = b \sin t. \end{cases}$$

$$\begin{cases} x = e^{t} \sin t, \\ y = e^{t} \cos t. \end{cases}$$
 494.
$$\begin{cases} x = 3t, \\ y = 6t - t^{2}. \end{cases}$$
 495.
$$\begin{cases} x = \cos t, \\ y = \sin 2t. \end{cases}$$

496.
$$\begin{cases} x = tg t, \\ y = \sin 2t + 2\cos 2t. \end{cases}$$

Записать уравнения касательных к данным линиям в точке ${\rm M}_0$.

497.
$$\begin{cases} x = 3\cos t, \\ y = 4\sin t, \end{cases} M_0 \left(3\frac{\sqrt{2}}{2}; 2\sqrt{2}\right).$$

498.
$$\begin{cases} x = t - t^4, \\ y = t^2 - t^3, \end{cases} M_0(0;0).$$
 499.
$$\begin{cases} x = t^3 + 1, \\ y = t^2 + t + 1, \end{cases} M_0(1;1).$$

500.
$$\begin{cases} x = 2\cos t, \\ y = \sin t, \end{cases} M_0 \left(1; -\frac{\sqrt{3}}{2} \right).$$

5.5. Производные и дифференциалы высших порядков.

Правило Лопиталя

Найти производные указанных порядков.

501.
$$y = \sqrt[3]{x+2}$$
, $y''' - ?502$. $y = xe^{-x}$, $y''' - ?$

503. 5.5.3.
$$y = \frac{\ln x}{x}$$
, $y'' - ?$ 504. $y = \sin 4x$, $y^{(5)} - ?$

505.
$$y = x \cos 2x$$
, $y'' - ?$ 506. $y = \operatorname{arctg} x$, $y'' - ?$

507.
$$y = x \arccos x$$
, $y'' - ?$ 508. $y = e^{-2x}$, $y^{(n)} - ?$

509.
$$y = \ln x$$
, $y^{(n)}$ -? 510. $y = \frac{1}{x+2}$, $y^{(n)}$ -?

Вычислить предел по правилу Лопиталя.

511.
$$\lim_{x\to 0} \frac{e^x - 1}{\sin 2x}$$
. 512. $\lim_{x\to 0} \frac{1 - \cos 2x}{1 - \cos 3x}$.

513.
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}.$$
 514.
$$\lim_{x \to \infty} \frac{\ln x}{x}.$$

515.
$$\lim_{x \to \frac{\pi}{2}} \frac{\text{tg } x}{\text{tg3} x}$$
. 516. $\lim_{x \to 0} x \ln x$.

517.
$$\lim_{x \to +\infty} x^n e^{-x}$$
. 518. $\lim_{x \to 0} \frac{e^{2x} - 1}{\ln(1 + 2x)}$.

519.
$$\lim_{x\to 0} (1-e^{2x}) \operatorname{ctg} x$$
. 520. $\lim_{x\to 0} x^x$.

521.
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$
.

522. Найти
$$d^3y$$
, если $y = (2x-3)^3$.

523. Найти
$$d^3y$$
, если $y = x(\ln x - 1)$.

524. Найти
$$d^2y$$
, если $y = \ln(x + \sqrt{x^2 + 4})$.

5.6. Дифференциал: геометрический смысл и приложения

Найти приращения и дифференциал в точке X_0 .

525.
$$y = x^3$$
, $x_0 = 1$, $\Delta x = 0.1$.

526.
$$y = \sin x$$
, $x_0 = \frac{\pi}{6}$, $\Delta x = 0.05$.

527.
$$y = e^{2x}$$
, $x_0 = 2$, $\Delta x = 0.2$.

528.
$$y = \sqrt{x+1}$$
, $x_0 = 3$, $\Delta x = 0.3$.

529.
$$y = \frac{1}{x^2 + 1}$$
, $x_0 = -1$, $\Delta x = 0.1$.

Найти приращение касательной к графику функции $\,y=f(x)\,$ в точке $\,x_0\,$.

530.
$$y = \frac{1}{4x^4}$$
, $x_0 = -1$, $\Delta x = 0.2$.

531.
$$y = e^{\sqrt{x}}$$
, $x_0 = 1$, $\Delta x = 0.1$.

532.
$$y = \frac{1}{(tg x + 1)^2}, x_0 = \frac{\pi}{4}, \Delta x = \frac{\pi}{60}.$$

Вычислить приближенно с помощью дифференциала.

533.
$$arctg1,02$$
. 534. $\sqrt{4,08}$. 535. $e^{0,1}$.

Рассчитать абсолютную и относительную погрешности.

536.
$$x\sqrt{x}$$
, $x = 4 \pm 0.3.537.3^{x}$, $x = 2 \pm 0.1.$

5.7. Теоремы о дифференцируемых функциях.

Формула Тейлора

Проверить справедливость теоремы Ролля для заданных на отрезке функций.

538.
$$y = x^2 - 9x + 2$$
, $x \in [0, 9]$.

539.
$$y = x^3 - 4x^2 - 7x - 10$$
, $x \in [-1; 2]$.

540.
$$y = \ln \sin x$$
, $x \in \left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$.

Доказать, что уравнение имеет корень на данном отрезке.

541.
$$x = \cos x$$
, $x \in \left[0; \frac{\pi}{2}\right]$. 542. $2 - x = e^x$, $x \in [0; 1]$.

543.
$$\ln x = \cos x$$
, $x \in [1; e]$.

Написать формулу Лагранжа для функции на данном отрезке.

544.
$$y = \sin 3x$$
, $x \in \left[0; \frac{\pi}{6}\right]$. 545. $y = x(1 - \ln x)$, $x \in [1; e]$.

Написать формулу Коши для функций на данном отрезке.

546.
$$f(x) = \sin x$$
, $\phi(x) = \ln x$, $x \in [a;b]$, $0 < a < b$.

547.
$$f(x) = e^{2x}$$
, $\phi(x) = 1 + e^{x}$, $x \in [a;b]$.

Записать первые три ненулевых члена формулы Тейлора для функции в окрестности точки ${\bf X}_0$.

548.
$$y = x^4 - 5x^3 + x^2 - 3x + 4$$
, $x_0 = 1$.

549.
$$y = \frac{1}{x}$$
, $x_0 = -1$. 550. $y = \sqrt{x}$, $x_0 = 4$.

551.
$$y = 2^x$$
, $x_0 = 0$.

552. Вычислить $\sqrt{e}\,$ с точностью $10^{-3}\,$.

553. Вычислить
$$\cos 41^0$$
 с точностью 10^{-3} .

554. Вычислить
$$\sin 36^0$$
 с точностью 10^{-3} .

Записать формулу Маклорена для функций.

555.
$$y = ch x = \frac{e^x + e^{-x}}{2}$$
. 556. $y = sh 2x = \frac{e^{2x} + e^{-2x}}{2}$.

557.
$$y = \ln(1+x)$$
.

5.8. Исследование функции

Для данных функций найти:

- а) интервалы монотонности, экстремумы;
- б) интервалы выпуклости и точки перегиба;
- в) асимптоты функции.

558.
$$y = \frac{x^3}{x^2 + 12}$$
. 559. $y = \frac{x}{x^2 - 1}$. 560. $y = \frac{x^4}{x^3 - 1}$.

561.
$$y = \frac{x}{e^x}$$
. 562. $y = x^3 e^{-x}$. 563. $y = xe^{-\frac{x^2}{2}}$

564.
$$y = \frac{e^x}{x}$$
.

Найти наименьшее и наибольшее значения функции на данном отрезке.

565.
$$y = x^4 - 2x^2 + 5$$
, $x \in [-2; 2]$.

566.
$$y = x + 2\sqrt{x}$$
, $x \in [0;4]$.

567.
$$y = \sin 2x - x$$
, $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

568.
$$y = 2tg x - tg^2 x$$
, $x \in \left[0; \frac{\pi}{3}\right]$.

569. Построить графики для заданий 559 и 561.

ОТВЕТЫ

ГЛАВА 1

1.1.

1. B. 2. A. 3. A. 4. Ø. 5. B. 6. A. 7. B. 8. Ø. 9. Ø. 10. Ø.

11. A \ C . 12. B. 13. A \boldsymbol{U} B . 14. A \boldsymbol{I} B . 15. A $_{1}$ \boldsymbol{U} A $_{2}$. 16. A $_{1}$.

1.2.

17. а)
$$4+2i$$
, б) $4-4i$, в) $2i$, г) $6+8i$, д) $-10i$, е) 10 , ж) $-i$, з) $\frac{3}{5}-\frac{4}{5}i$. 18. а) 5 , б) $-1+2i$, в) $-2i$, г) $7+i$, д) $5+5i$,

e) 10, ж)
$$\frac{1}{2} + \frac{1}{2}i$$
, 3) $\frac{7-i}{10}$. 19. a) 4, б) $4 + 4i$, в) 6, г) $7 - 4i$,

д)
$$-1+8i$$
, e) 5, ж) $\frac{-1+2i}{5}$, 3) $\frac{7+4i}{5}$.

$$20.^*$$
 a) $-1+5i$, 6) $-16+14i$, b) $\frac{-4-7i}{25}$, Γ) $\frac{-12-4i}{5}$.

21.* a)
$$2+7i$$
, б) $\frac{2i-3}{2}$, в) $\frac{17i-7}{2}$.

$$22.^* \text{ a}) - 13 - 11i, 6) - \frac{9 + 13i}{50}, \text{ B}) 1 + 3i.$$

1.3.

23.
$$\sqrt{2}$$
, $\frac{\pi}{4}$, $\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$, $\sqrt{2} e^{\frac{\pi}{4}i}$.

24.
$$\sqrt{2}$$
, $\frac{3\pi}{4}$, $\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$, $\sqrt{2} e^{\frac{3\pi}{4}i}$.

25.
$$\sqrt{2}$$
, $-\frac{\pi}{4}$, $\sqrt{2} \left(\cos \left(\frac{-\pi}{4} \right) + i \sin \left(\frac{-\pi}{4} \right) \right)$, $\sqrt{2} e^{\frac{-\pi}{4} i}$.

26.
$$\sqrt{2}$$
, $-\frac{3\pi}{4}$, $\sqrt{2} \left(\cos \frac{-3\pi}{4} + i \sin \frac{-3\pi}{4} \right)$, $\sqrt{2}e^{-\frac{3\pi}{4}i}$.

27. 2,
$$-\frac{\pi}{6}$$
, $2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$, $\sqrt{2}e^{-\frac{\pi}{6}i}$.

28. 2,
$$\frac{\pi}{3}$$
, $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$, $2e^{\frac{\pi}{3}i}$.

29. 2,
$$-\frac{\pi}{2}$$
, $2\left(\cos\left(\frac{-\pi}{2}\right) + i\sin\left(\frac{-\pi}{2}\right)\right)$, $2e^{-\frac{\pi}{2}i}$.

$$30.^* 2 \left(\cos\left(\frac{-\pi}{2}\right) + i\sin\left(\frac{-\pi}{2}\right)\right), e^{-\frac{\pi}{2}i}.$$

31.*
$$\sqrt{10}(\cos\varphi + i\sin\varphi)$$
, $\varphi = -\arctan 3$, $\sqrt{10}e^{\varphi i}$.

31.
$$\sqrt{10(\cos\phi + i\sin\phi)}$$
, $\phi = -\arctan\phi$
32.* $6\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$, $6e^{\frac{2\pi}{3}i}$.

33
$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

33.
$$4\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right), \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$
.

34.
$$2\sqrt{2}\left(\cos\left(\frac{-\pi}{12}\right) + i\sin\left(\frac{-\pi}{12}\right)\right), \sqrt{2}\left(\cos\left(-\frac{\pi}{8}\right) + i\sin\left(-\frac{\pi}{8}\right)\right).$$

$$(12) \qquad (12)) \qquad (8)$$

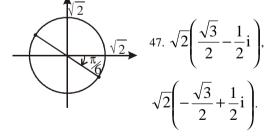
$$35. 4 \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), \cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right).$$

36.
$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right), \cos\left(\frac{-5\pi}{6}\right) + i\sin\left(\frac{-5\pi}{6}\right)$$

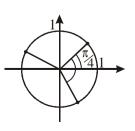
37.*
$$4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right), \cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)$$
.

$$38.^* \ 4\sqrt{2} \left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right), \ 2\sqrt{2} \left(\cos\left(-\frac{5\pi}{12}\right) + i\sin\left(-\frac{5\pi}{12}\right)\right).$$

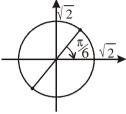
$$39.^* 4\sqrt{2} \left(\cos \left(-\frac{5\pi}{12} \right) + i \sin \left(-\frac{5\pi}{6} \right) \right),$$

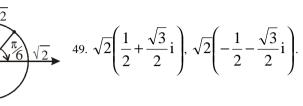

$$2\sqrt{2}\left(\cos\left(-\frac{11\pi}{12}\right)+i\sin\left(-\frac{11\pi}{12}\right)\right).$$

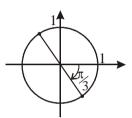
$$40.-2^{6}$$
.


$$40. -2^{6}. \ 41. -2^{15}i. \ 42. -2^{10}. \ 43. \ 2^{12}. \ 44.^{*} \frac{i}{2^{9}}. \ 45.^{*} 1.$$

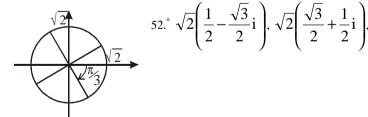
$$46.^* - \frac{i}{2^{15}}$$

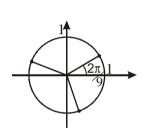

1.5.




48.
$$\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, -\cos\frac{\pi}{12} + i\sin\frac{\pi}{12},$$

$$-\sin\frac{\pi}{12}-i\cos\frac{\pi}{12}$$
.




50.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

$$51.^*\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}$$

$$-\cos\frac{\pi}{9} + i\sin\frac{\pi}{9},$$

$$\cos\frac{4\pi}{\Omega} - i\sin\frac{4\pi}{\Omega}$$
.

$$\sqrt{2}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right), \sqrt{2}\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right).$$

$$53.^* - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
,

$$\frac{53.^* - \frac{1}{2} + \frac{1}{2}i}{2}i$$
, $\frac{-\frac{1}{2} - \frac{1}{2}i}{2}i$, 1.

1.7.
$$54. \pm 4i$$
. $55. 2, -1 + i\sqrt{3}, -1 - i\sqrt{3}$. $56. -2 - i, -2 + i$.

57.
$$\pm 2$$
, $\pm i$. 58. $z = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$, $z = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$.

59.
$$z = -2i$$
, $z = -i$. $60.* (z - i)(z + i)(z - 2i)(z + 2i)$.

61.*
$$(z-1)\left(z+\frac{1+i\sqrt{7}}{2}\right)\left(z+\frac{i\sqrt{7}-1}{2}\right)$$
.

62.*
$$(z-1)\left(z-\frac{\sqrt{2}(1-i)}{2}\right)\left(z+\frac{\sqrt{2}(1-i)}{2}\right)$$

1.8.

71. Гипербола
$$\frac{\left(y - \frac{1}{3}\right)^2}{\left(\frac{1}{3}\right)^2} - \frac{x^2}{\left(\frac{1}{\sqrt{3}}\right)^2} = 1 \text{ при } y \ge \frac{1}{2}.$$

ГЛАВА 2

72.
$$AB = \begin{pmatrix} 5 & 2 \\ 7 & 0 \end{pmatrix}$$
. 73. $AB = \begin{pmatrix} 3 & 1 \end{pmatrix}$. 74. $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

75.
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. 76. $AB = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 6 & 0 \\ 3 & 6 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. 77. $\begin{pmatrix} 0 & -1 \\ -2 & 5 \end{pmatrix}$.

78.
$$\begin{pmatrix} 3 & 0 \\ 5 & 2 \end{pmatrix}$$
. 79. $\begin{pmatrix} 3 & 7 \\ 6 & 6 \end{pmatrix}$. 80. $\begin{pmatrix} 7 & 1 \\ 5 & 12 \end{pmatrix}$. 81. $\begin{pmatrix} -2 & 6 \\ -6 & -2 \end{pmatrix}$.

82.
$$f(A) = \begin{pmatrix} -1 & 0 \\ 16 & 9 \end{pmatrix}$$
. 83. $f(A) = \begin{pmatrix} 3 & 10 \\ 0 & 13 \end{pmatrix}$. 84. $f(A) = \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix}$.

85.
$$f(A) = \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix}$$
. 86. $f(A) = \begin{pmatrix} -9 & 0 \\ 0 & 0 \end{pmatrix}$.

$$87. -2. \ 88. \ 2. \ 89. -3. \ 90. -10. \ 91. -1. \ 92. -3. \ 93. \ 0. \ 94. \ 40.$$

110.*
$$(-1)^n$$
 . 111.* n^n .

112.
$$A^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
. 113. $A^{-1} = \begin{pmatrix} -3 & 2 & 3 \\ 0 & 1 & 2 \\ -4 & 3 & 5 \end{pmatrix}$.

114.
$$A^{-1} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. 115. $A^{-1} = \begin{pmatrix} 3 & -1 & -1 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

116.
$$A^{-1} = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 1 & 0 \\ -4 & -1 & 1 \end{pmatrix}.$$

- 2.5.
- 117. (16;7). 118. (1;3;5). 119. (2;3). 120. $(\sqrt{3};4)$.
- 121. $(2\sqrt{5};2)$. 122.* (1;2;-3). 123.* (-3;3;0). 124.* (-1;1;3).
- 2.6.
- 125. 2. 126. 2. 127. 2. 128. 3. 129. 2. 130.* 3. 131.* 2. 132.* 3. 133.*3.
- 2.7.

134.
$$\begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$$
. 135. X не существует. 136. $\begin{pmatrix} -3 & 3 \\ -1 & 3 \end{pmatrix}$.

137. X не существует. 138. $\begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$. 139.* $\begin{pmatrix} 13 & 8 \\ 5 & 3 \end{pmatrix}$.

$$140.^{*} \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix}. \quad 141.^{*} \begin{pmatrix} -5 & 6 \\ -4 & 5 \end{pmatrix}. \quad 142.^{*} \begin{pmatrix} 5/2 & 1 \\ 2 & 1 \end{pmatrix}.$$

- 143. (16; 7). 144. (2; 3). 145. (2; -1; 1). 146. (1; 3; 5).
- 147. (3;1;-1). 148. (-3;2;1). 149. (-1;1;-2).

$$150.^* X_1 = -2; X_2 = 0; X_3 = 1; X_4 = -1.$$

151.*
$$x_1 = 1$$
; $x_2 = 2$; $x_3 = 2$; $x_4 = 0$.

- 2.8.
- 152. (0;t;t), (0;1;1). 153. (-t;t), (-1;1). 154. (0;t;t), (0;1;1).

155.
$$(t_2 - t_1; t_1; t_2), (-1; 1; 0), (1; 0; 1)$$
. 156. $(3t; 2t), (3; 2;)$.

$$157.*$$
 (t: $-2t$: t), (1: -2 : 1).

$$158.* (8t_2 - 7t_2; -6t_1 + 5t_2; t_1; t_2), (8; -6; 1; 0), (-7; 5; 0; 1).$$

$$159.^* (-2t;7t;0;9t), (-2;7;0;9).$$

160.
$$(2;3;1)$$
. 161. $(-1;6;2)$. 162. Система несовместна.

163.
$$(1+\sqrt{3}t;t)^{T}$$
. 164. $(1;2;3)$. 165. $(1;2;3)$. 166. $(2;-1;1)$.

167.
$$(-1+2t; 1+t; t)^T$$
. 168.* $x_1 = 2; x_2 = -2; x_3 = 1; x_4 = -1$.

$$169.^*\left(-\frac{6}{7}+\frac{8}{7}c_1,\frac{1}{7}-\frac{13}{7}c_1,\frac{15}{7}-\frac{6}{7}c_1,c_1\right)^T$$

$$170.$$
* $(c_1, c_2, 5 - 8c_1 + 4c_2, 1 + 2c_1 - c_2)^T$.

ГЛАВА 3

172. 1)
$$\overline{a} \perp \overline{b}$$
, 2) $\angle (\overline{a}, \overline{b}) < \frac{\pi}{2}$, 3) $\angle (\overline{a}, \overline{b}) > \frac{\pi}{2}$.

173.
$$|\overline{a} + \overline{b}| = \sqrt{19}$$
, $|\overline{a} - \overline{b}| = 7$.

175.
$$\overline{MA} = \frac{1}{2} (\overline{a} - \overline{b}), \overline{MB} = \frac{1}{2} (\overline{b} - \overline{a}).$$

$$176.^* \overline{SM} = \frac{1}{3} \left(\overline{a} + \overline{b} + \overline{c} \right). 177.^* \operatorname{np}_1 \left(3\overline{a} + 2\overline{b} + \overline{c} \right) = -\frac{1}{3}.$$

178.
$$|\overline{a}| = \frac{3}{5}$$
, $\cos \alpha = \frac{1}{3}$, $\cos \beta = \cos \gamma = \frac{2}{3}$.

179.*
$$D(-3; 0; 5)$$
. 180.* $\overline{c}^0 = -\frac{1}{\sqrt{42}}\overline{i} + \frac{5}{\sqrt{42}}\overline{j} + \frac{4}{\sqrt{42}}\overline{k}$.

181.
$$\overline{a}^0 = \frac{3}{13}\overline{i} + \frac{4}{13}\overline{j} - \frac{12}{13}\overline{k}$$
, $\cos \alpha = \frac{3}{13}$, $\cos \beta = \frac{4}{13}$, $\cos \gamma = -\frac{12}{13}$.

3.2.

182.
$$|\overline{AB}| = \frac{3}{5}|\overline{AC}|$$
, \overline{AC} длиннее \overline{AB} . 183. $\alpha = -4$, $\beta = \frac{3}{2}$.

184.
$$|\overline{AB}| = |\overline{DC}| = \sqrt{86}$$
, $|\overline{AD}| = |\overline{BC}| = \sqrt{41}$.

185.
$$|\overline{AB}| = 2|\overline{CD}|$$
, $\overline{AB} \uparrow \uparrow \overline{CD}$. 186. $\overline{d} = -48\overline{i} + 45\overline{j} - 36\overline{k}$.

$$187.^* \overline{c}(-3;15;12).$$

$$188.^* \overline{AM}(3; 4; -3), \overline{BN}(0; -5; 3), \overline{CP}(-3; 1; 0).$$

190.* Не коллинеарны. 191.*
$$\overline{x} = -5\overline{i} + 10\overline{j} + 10\overline{k}$$
.

3.3.

192.
$$\{\overline{p}, \overline{q}\}$$
 – базис, $\overline{d} = 2\overline{p} + 5\overline{q}$.

193. 1) $\{\overline{a}, \overline{b}, \overline{c}\}$ образуют базис;

2)
$$\overline{a}$$
, \overline{b} , \overline{c} линейно зависимы, $2\overline{a} + \overline{b} - \overline{c} = 0$.

194.
$$\overline{a} = -2\overline{e}$$
. 195. $\overline{a} = -\frac{4}{5}\overline{e}_1 - \frac{2}{5}\overline{e}_2$. 196. $\overline{a} = -2\overline{e}_1 + \overline{e}_2 - \overline{e}_3$.

$$197.^* \overline{a} + \overline{b} - 2\overline{c} = -2\overline{j}. 198.^* \overline{p} = 2\overline{a} - 3\overline{b}. 199.^* \overline{c} = 2\overline{p} - 3\overline{q} + \overline{r}.$$

$$200.^* \ \overline{d} = 2\overline{a} - 3\overline{b} + \overline{c} \ . \quad 201.^* \ 3\overline{m} + 2\overline{n} - 3\overline{p} + 4\overline{q} = 0 \ .$$

3.4.

203.
$$\rho = \frac{1}{\cos \theta}$$
.

- 204. 1) окружность радиусом а с центром в полюсе О;
 - 2) луч, проведенный из полюса О под углом α к полярной оси;
 - 3) прямая, проходящая через полюс О под углом α к полярной оси.

205.
$$(x^2 + y^2)^2 = 18xy$$
 – лемниската Бернулли.

206.
$$\rho = 2a\cos\varphi$$
. 207. $(x^2 + y^2)^{\frac{3}{2}} = 2(x^2 - y^2)$.

208.
$$(x^2 + y^2 - 2ax)^2 = 4a^2(x^2 + y^2)$$
.

209.
$$(x^2 + y^2 - x)^2 = 4(x^2 + y^2)$$
.

210.
$$\rho = a$$
. 211.* $\rho^2 = \frac{b^2}{1 - s^2 \cdot \cos^2 \alpha}$.

3.5.

212.
$$\binom{\mathbf{r}}{\mathbf{a}}, \overset{\mathbf{i}}{\mathbf{b}} = 14$$
, $\cos \alpha = \sqrt{\frac{7}{27}}$. 213. 1) -7, 2) 13. 214. $\alpha = 40$.

216.
$$\varphi = \arccos \frac{1}{\sqrt{5}}$$
. 217. $-\frac{1}{3}$. 218. $|\overline{a} + \overline{b}| = 15$, $|\overline{a} - \overline{b}| = \sqrt{593}$.

219.*
$$A = 2$$
. 220.* $\varphi = \pi - \arccos \frac{6}{\sqrt{11}}$. 221.* $\sqrt{3}$.

222.*
$$\overline{x} = -\frac{3}{2}\overline{i} + \frac{3}{4}\overline{j} + \frac{3}{2}\overline{k}$$
.

3.6.

223.
$$\mathbf{a} \times \mathbf{b} = 2\mathbf{i} - 35\mathbf{j} - 18\mathbf{k}$$
, $|\mathbf{a} \times \mathbf{b}| = 38,52$. 224. 14. 225. $\mathbf{S} = 1,5$.

226.
$$2\bar{i} + 11\bar{j} + 7\bar{k}$$
. 227. $\frac{\sqrt{30}}{6}$. 228. $\frac{2\sqrt{22}}{\sqrt{109}}$. 229.* $\frac{15\sqrt{2}}{2}$.

$$230.^* 18\overline{i} - 6\overline{j} - 8\overline{k}$$
. $231.^* \frac{13}{\sqrt{6}} (-1; -1; 2)$. $232.^* \left(\frac{5}{4}; \frac{1}{2}; \frac{11}{4}\right)$.

$$233.^* \frac{3\sqrt{21}}{14}$$
.

3.7.

234.
$$(\overline{A_1 A_2}, \overline{A_1 A_3}, \overline{A_1 A_4}) = -24$$
, V = 4 куб. ед.

235. 1) правая; 2) левая; 3) левая.

236.
$$\begin{cases} 27, \text{ если тройка векторов правая,} \\ -27, \text{ если тройка векторов левая.} \end{cases}$$

- 237. 1) компланарны; 2) не компланарны.
- 238. Точки лежат в одной плоскости.
- 239. V = 12, тройка левая. 240. h = 11.

241.*
$$D_1(0; 8; 0), D_2(0; -7; 0).$$

- 242.* Указание. Домножить все члены на \overline{c} скалярно. Зная, что $[\overline{b},\overline{c}]\overline{c}=0$ и $[\overline{c},\overline{a}]\overline{c}=0$, получаем $[\overline{a},\overline{b}]\overline{c}=0$, а это и есть условие компланарности трех векторов.
- 243.* V=0 , так как видно из разложения векторов \overline{a} , \overline{b} , \overline{c} , что они компланарны.

244.*
$$np_{\overline{b}}\overline{a}=\frac{6}{7}$$
, если \overline{p} , \overline{q} , \overline{r} - правая тройка, $np_{\overline{b}}\overline{a}=-\frac{6}{7}$, если \overline{p} , \overline{q} , \overline{r} - левая тройка.

3.8.

245.
$$\frac{x}{-4} + \frac{y}{3} = 1$$
 или $\frac{x}{2} + \frac{y}{-6} = 1.247. \frac{\pi}{4}$. 248. $d = 4$.

249.
$$|AD| = \sqrt{10} \cdot 250^{*} \cdot 1,3 \cdot 251^{*} 7x - 9y + 2 = 0$$

252.*
$$\frac{X}{4} + \frac{y}{6} = 1.253.* B(1;3), C(11;6).$$

254.*
$$B(1;1)$$
, $D(-1;3)$ AB: $x-1=0$, BC: $y-1=0$,

CD:
$$x+1=0$$
, AD: $y-3=0$.

3.9. 255.
$$2x + y = 0$$
. 256. $5x - 3y + 2x + 1 = 0$. 257. $\pi/3$.

258.
$$2x + 3y + 2z - 3 = 0$$
. 259. $x + y + z - 12 = 0$.

$$260.^{*} 2x - 2y + z - 2 = 0$$
. $261. d = 3$. $262.^{*} \pi/3$.

$$263.^{*} x - y + 2 = 0.264.^{*} 15x + 10y - 6z - 60 = 0.$$

265.
$$\cos \varphi = \frac{1}{\sqrt{2}}$$
. 266. $\frac{x}{-11} = \frac{y-2}{17} = \frac{z-1}{13}$.

267.
$$\frac{x-3}{0} = \frac{y-2}{-2} = \frac{z+1}{1}$$
. 268. $8x - 5y + z - 11 = 0$.

269.
$$\begin{cases} x = 2t \\ y = -8t & 270.^* \ M_0(5;5;5).\ 271.^* \ M_0(3;3;3). \\ z = 4 \end{cases}$$

$$272.* \begin{cases} x = 5t + 1 \\ y = -4t \\ z = -t - 1 \end{cases} = \frac{y - \frac{5}{3}}{-1} = \frac{z - \frac{5}{3}}{0} \cdot 274.^* \ d = 7.$$

275.
$$\frac{x^2}{100} + \frac{y^2}{36} = 1.276. \frac{x^2}{16} + \frac{y^2}{7} = 1.277. \frac{x^2}{25} - \frac{y^2}{75} = 1.$$

278.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1.279. \ x^2 = 8y.280. \ S = \frac{480}{7}.$$

$$281.* \frac{x^2}{25} - \frac{y^2}{144} = 1.282.* \frac{x^2}{36} - \frac{y^2}{9} = 1.283.* 10.$$

$$284.^* (x+1,5)^2 + y^2 = 6,25.$$

3.11.

285.
$$M_1(3;-3)$$
, $M_2\left(\frac{69}{13};\frac{21}{13}\right)$. 286. $M(5;-4)$.

287.
$$x - 2y - 12 = 0$$
 и $x + 2y + 8 = 0$. 288. $M(10; -2)$.

289.
$$M_1(2;-6)$$
, $M_2(\frac{1}{2};3)$. 290.* $\frac{24}{5}\sqrt{2}$.

$$291.* 2x - 5y + 19 = 0.$$

$$292.^* 3x - 2y - 1 = 0.293.^* 12.294.^* x + 3y = 0.$$

3.12.

295. Сфера с центром в т.
$$0(3;-4;-1)$$
, $R=4$.

296. Эллипсоид
$$\frac{(x+2)^2}{16} + \frac{(y-1)^2}{4} + \frac{(z+1)^2}{1} = 1$$
.

297. Однополостный гиперболоид

$$\frac{(x-1)^2}{8} + \frac{(y+3)^2}{16} - \frac{(z-2)^2}{4} = 1.$$

298. Двуполостный гиперболоид

$$\frac{(x-3)^2}{9} + \frac{(y+2)^2}{1} - \frac{(z-1)^2}{3} = 1.$$

299. Эллиптический параболоид
$$\frac{(x+4)^2}{4} + \frac{(y-2)^2}{2} = z+5.$$

$$300.* \frac{a}{a} = \frac{c}{c} = \frac{3}{\sqrt{5}}$$

301.*
$$x = 0$$
, $\frac{y^2}{16} - \frac{z^2}{4} = 1$. $x = \pm 3$, $\frac{y^2}{12} - \frac{z^2}{3} = 1$.

302.* Эллипс:
$$x^2 + 2y^2 - 4x = 0$$
, $z = 0.303$.* $\frac{a}{a_1} = \frac{c}{c_1} = \frac{1}{\sqrt{3}}$.

$$304.^* z = 8.$$

4.1.

305.
$$\frac{49}{324}$$
. 306. $a_n = \frac{(-1)^n}{n+1}$. 307. $n > 333$. 308. $a_n = \frac{n+(-1)^{n+1}}{n+2}$.

309.
$$n \ge 26$$
. 310. $n \ge 59$. 313. Ограничены 1,3,5,8. 318. 1,3,5.

319. 1. 320. 4. 321.
$$\frac{1}{6}$$
. 322. $\frac{1}{2}$. 323. 0. 324. ∞ . 325. 3. 326. e^{-2} .

327.
$$e^3$$
. 328. $\frac{7}{2}$. 329.* $\frac{\pi}{4}$. 330.* $\frac{9\pi}{4}$. 332.* 1) убывающая;

333.* 19800. 334.* 2.335.*
$$\frac{1}{5}$$
.336.* -1 .337.* $\frac{1}{12}$.338.* 0.

4.2.

339. 1)
$$x \in [-3;3]$$
; 2) $x \in [0;4]$; 3) $x \in [-3;0]$; 4) $x \in [-3;5]$;

5)
$$2\pi n \le x \le \pi + 2\pi n$$
, где $n \in \mathbb{Z}$;

6)
$$x \in \left(-\infty; -2\sqrt{2}\right) \cup \left(2\sqrt{2}; +\infty\right);$$

7)
$$x \in \left(-\frac{1}{3}; +\infty\right)$$
; 8) $x \in \left(-\infty; 2\right] \cup \left[3; +\infty\right)$;

9)
$$x \in (-\infty; +\infty)$$
; 10) $x \in (2; 3]$.

340. 1)
$$[-3;+\infty)$$
; 2) $[1;+\infty)$; 3) $[2;4]$; 4) $(0;1]$; 5) $[-11;-5]$;

6)
$$(-\infty;5) \cup (5;+\infty);$$
 7) $[4;+\infty);$ 8) $(-\infty;-4].$

342. 1) да,
$$T = \frac{\pi}{3}$$
; 2) да, $T = \frac{\pi}{2}$; 3) да, $T = 5\pi$; 4) да, $T = 2\pi$;

5) да,
$$T = \pi \sqrt{2}$$
; 6) нет; 7) нет; 8) нет; 9) да, $T = 1$; 10) нет.

344.*
$$[-3;0)\cup(0;\pi)\cup(\pi;3,2]$$
. 345.* $[-\log_2 6,-2]$. 346.* $[-\infty,1]$.

$$347.^* \left[\frac{1}{64}; \frac{1}{8} \right].$$

349. 1)
$$O(x^4)$$
; 2) $O(x)$; 3) $O(x^3)$; 4) $O(x^3)$; 5) $O(x)$. 351. $\frac{-3}{5}$.

352.
$$\frac{5}{3}$$
. 353. $\frac{1}{2}$. 354. $3 \ln 2$. 355. 2. 356. $\frac{1}{2}$. 357. 0. 358. ∞ .

$$359.^*1) - 3x^2; 2) - 2x^2; 3) - \frac{\pi^2}{2}x^2; 4) \times \ln \frac{a}{b}; 5) 5x.$$

$$360.^*1$$
) $-10(1-x)$; 2) $6\ln\frac{3}{2}(1-x)$. $361.^*\frac{1}{2}$. $362.^*4$. $363.^*-\frac{1}{2}$.

$$364.^* \frac{21\pi}{26}.365.^* \frac{-3\pi^2}{2}.366.^* 1.367.^* e^{\frac{-1}{\pi}}.368.^* e^{\frac{-2}{\pi}}.369.^* 3e.$$

370. 10. 371.
$$\frac{1}{8}$$
 . 372. $\frac{9}{16}$. 373. $\frac{2}{3}$. 374. $-\frac{1}{5}$. 375. 0. 376.* -1 .

$$377.^* \propto . \quad 378.^* \frac{m}{n}. \quad 379.^* \propto . \quad 380.^* \frac{1}{3\sqrt[3]{x^2}}. \quad 381.^* 4. \quad 382.^* 0.$$

$$383.^* - \frac{\pi}{2}$$
. $384.^* + \infty$. $385.^*$ 0. $386.^*$ 0. $387.^* + \infty$. $388.^*$ 0.

4.5.

$$389. \ \frac{\alpha}{\beta} \, . \ 390. \ \frac{2}{5} \, . \ 391. \ \frac{2}{3} \, . \ 392. \ \frac{1}{3} \, . \ 393. \ 0. \ 394. \ 5. \ 395.^* \ \frac{1}{2} \, . \ 396.^* \frac{1}{2} \, .$$

$$397.^* - \frac{3}{2}.398.^* \cdot 1.399.^* \cdot \frac{1}{2}.400. e^{-1}.401.1.402. e^{mk}.403. e^4.$$

404. ∞ . 405.
$$e^2$$
 . 406.* e^6 . 407.* $e^{-\frac{2}{3}}$. 408.* e . 409.* 1. 410.* -1.

4.6.

$$415.^*$$
 $x=0$ устранимый разрыв. $416.^*$ $x=0$ разрыв 2 рода.

$$417.^*$$
 $x=1$ разрыв 1 рода, в точке $x=1$ непрерывна справа.

418.*
$$x = \pm 2$$
 разрыв 2 рода. 419.* $x = 0$ разрыв 1 рода.

$$420.^* \text{ x} = 3$$
 разрыв 1 рода.

421.*
$$x = 2$$
 разрыв 1 рода, непрерывна справа в точке $x = 2$.

422.
$*$
 x = 0 разрыв 2 рода, x = 1 разрыв 1 рода.

ГЛАВА 5

5.1.

423.
$$y' = 5x^4 + 6x^2 - \frac{1}{8}$$
. 424. $y' = \frac{1}{4\sqrt[4]{x^3}} + \frac{6}{x^3}$.

425.
$$y' = \frac{1}{\cos^2 x} - \frac{2}{\sin^2 x}$$
. 426. $y' = \frac{3}{2}\sqrt{x}$.

427.
$$y' = 3x^2 \log_2 x + \frac{x^2}{\ln 2}$$
. 428. $y' = -\frac{1}{\sqrt{x(1+\sqrt{x})^2}}$.

429.
$$y' = \frac{\arcsin x}{2\sqrt{x}} + \frac{\sqrt{x+1}}{\sqrt{1-x^2}}$$
. 430. $y' = -tgx$.

431.
$$y' = 3 \cdot 7^{3x-1} \ln 7$$
. 432. $y' = \frac{2 \operatorname{arctgx}}{1 + \frac{2}{3}}$.

433.
$$y' = \frac{4x + 4}{3\sqrt[3]{(2x^2 + 4x - 3)^2}}$$
. 434. $y' = \frac{e^{4x}}{5\sqrt[5]{x^4}} + 4\sqrt[5]{x}e^{4x}$.

435.
$$y' = \frac{1}{\sqrt{x^2 + 1}}$$
. 436. $y' = \frac{2\cos 2x - 2}{\log x}$.

437.
$$y' = \frac{2e^{3x}(3x-1)}{(x-e^{3x})^2}$$
. 438. $y' = -\frac{1}{2\sqrt{x-x^2}}$.

439.
$$y' = 10^x \ln 10 \cdot \sin 6x + 6 \cdot 10^x \cos 6x$$
.

440.
$$y' = x^{x} (\ln x + 1)$$
.

441.
$$y' = 2 \ln x \cdot x^{\ln x - 1}$$
. 442. $y' = (\sin x)^x (\ln \sin x + x \cot x)$.

$$443.^* y' = \frac{4e^{4x} - 4}{\sqrt{e^{8x} - 1}}. \quad 444.^* y' = \frac{1}{\sqrt{\sin 2x} \left(\tan x - \sqrt{2\tan x} + 1 \right)}.$$

445.*
$$y' = 2^x \cos x$$
. 446.* $y' = -\frac{x+1}{(x-1)^2 \sqrt{2x-x^2}}$.

$$447.^* y' = x^{2x} \cdot 5^x (2 \ln x + 2 + \ln 5).$$

$$448.^* y' = (\cos 5x)^{e^x} (\ln \cos 5x - 5tg 5x)e^x.$$

449. -6. 450. -7,5. 451.
$$y = 16 + 7x$$
. 452. $y = \frac{1}{2} + \frac{1}{2}x$.

453.
$$y = \frac{13}{6} - \frac{3}{2}x$$
. 454. $x = 4$. 455. $t_1 = 4$, $t_2 = 8$. 456. 23.

$$457.^{*} 2x - y + 1 = 0.458.^{*} 2x - y - 1 = 0.$$

457.
$$2x - y + 1 = 0.458$$
. $2x - y - 1 = 0$
459.* $x + 25y = 0$, $x + y = 0.460$.* 242.

5.3.
461.
$$\mathbf{y'} = -\frac{2\mathbf{x}\sin(\mathbf{x}^2 + \mathbf{y}^2) + \mathbf{y}e^{\mathbf{x}\mathbf{y}}}{2\mathbf{y}\sin(\mathbf{x}^2 + \mathbf{y}^2) + \mathbf{x}e^{\mathbf{x}\mathbf{y}}}$$
. 462. $\mathbf{y'} = \frac{(2\mathbf{x}^2 + 1)\mathbf{y}}{\mathbf{x}(1 - 2\mathbf{y}^2)}$.

463.
$$y' = \frac{x(2x^2 - y^2)}{y(2y^2 + x^2)}$$
. 464. $-\frac{1}{e}$. 465. $\pm \frac{3}{2}$. 466. -1 .

467. 1;
$$\frac{\pm\sqrt{3}-1}{2}$$
. 468.* $\pm\sqrt{2+\sqrt{3}}$, $\pm\sqrt{2-\sqrt{3}}$. 469.* $\frac{1}{2}$.

$$470.^* - 2\left(4\pi k \pm \frac{2\pi}{3}\right)$$
. 471.* Не существует. 472. е. 473. $-\frac{1}{2}$.

$$474.^* y'' = \frac{-2a^3xy}{(v^2 - ax)^3} \cdot 475.^* y'' = \frac{-y}{(1 - \cos(x + y))^3} \cdot 476.^* \frac{1}{e^2}.$$

$$477.^* y''' = \frac{-3r^3x}{y^5} \cdot 478.^* \cdot 0 \cdot 479.^* \frac{y\left(\cos\frac{y}{x} - \frac{2}{x}\sin\frac{y}{x}\right)}{\left(x + \sin\frac{y}{x}\right)^2}.$$

$$480.^* \frac{y(y-2x)}{(y-x)^3} \cdot 481.^* \frac{4ay}{(1-y^2)^2}$$

$$482.^{*} \frac{-y^{2} \sin y \sin^{2} x + y \cos x + y \sin^{2} x \cos x}{(\cos x - \cos y)^{3}} -$$

$$-\frac{2y\cos y-y\cos x\cos^2 y}{\left(\cos x-\cos y\right)^3}.$$

$$483.^* \; \frac{2 \Big(xy^2 - xy - 1 \Big) \Big(xe^{xy} - 1 \Big) + \, y^2}{\Big(1 - xe^{xy} \Big)^3} \; .$$

5.4.

484.
$$y' = \frac{1}{\sqrt{1-y^2}}$$
. 485. $y' = \frac{1}{x \ln 2}$. 486. $y'_x = \frac{\sin t}{1-\cos t}$.

487.
$$y'_{x} = \frac{\cos t - \sin t}{\cos t + \sin t}$$
. 488. 0,75. 489. $y'_{x} = \frac{2\sqrt{t-1}}{3\sqrt[3]{t^{2}}}$.

490.
$$y' = \frac{3}{2}t - \frac{1}{2t}$$
, $y'' = -\frac{3t+1}{4t^3}$.

491.
$$y' = -1$$
, $y'' = 0$. 492. $y' = -\frac{b}{a} \operatorname{ctg} t$, $y'' = -\frac{b}{a^2 \sin^3 t}$.

493.
$$y' = \frac{\cos t - \sin t}{\cos t + \sin t}, \ y'' = \frac{-2e^{-t}}{(\cos t + \sin t)^3}.$$

494.
$$y' = 2 - \frac{2}{3}t$$
, $y'' = -\frac{2}{9}$.

495.
$$y' = -\frac{2\cos 2t}{\sin t}$$
, $y'' = -\frac{2\sin t \sin 2t + 2\cos t}{\sin^3 t}$.

496.
$$y' = 2\cos^3 t - 8\sin t \cos^3 t$$
,

$$y'' = -12\sin t \cos^5 t - 8\cos^6 t + 24\cos^4 t \sin^2 t + 4\sin^3 t \cos^3 t$$

497. $y = -\frac{4}{3}x + 4\sqrt{2}$. 498. y = 0, $y = \frac{1}{3}x$. 499. 5.4.16. x = 1.

500.
$$y = \frac{\sqrt{3}}{6}x + \frac{2\sqrt{3}}{3}$$
.

5.5.

501.
$$\frac{10}{27}(x+2)^{-\frac{8}{3}}$$
 502. $e^{-x}(x-3)$. 503. $2\frac{x \ln x - x - 1}{x^3}$.

504. $4^5 \cos 4x$. 505. $-4(x\cos 2x + \sin 2x)$. 506. $-\frac{2x}{(1+x^2)^2}$.

507.
$$\frac{x^2-2}{\sqrt{(1-x^2)^3}}$$
. 508. $(-1)^n 2^n e^{-2x}$. 509. $(-1)^{n+1} \frac{(n-1)!}{x^n}$.

510.
$$(-1)^n \frac{n!}{(x+1)^{n+1}}$$
. 511. $\frac{1}{2}$. 512. $\frac{4}{9}$. 513. $\frac{1}{6}$. 514. 0. 515. 3.

516. 0. 517. 0. 518. 1. 519. -2. 520. 1. 521. e⁻¹. 522. 48dx³.

523.
$$-\frac{dx^3}{x^2}$$
. 524. $-\frac{xdx^2}{(x^2+4)^{\frac{3}{2}}}$.

5.6.

525.
$$\Delta y = 0.331$$
, $dy = 0.3$. 526. $\Delta y = 0.043$, $dy = 0.043$.

527.
$$\Delta y = 26,85$$
, $dy = 21,84$. 528. $\Delta y = 0,07$, $dy = 0,08$.

529.
$$\Delta y = 0.0525$$
, $dy = 0.05$.

530. 0,2. 531. 0,05e. 532.
$$\frac{-\pi}{120}$$
. 533. $\frac{\pi}{4}$ + 0,01. 534. 2,02.

535. 1,1. 536.
$$a = 0.9$$
, $\delta = \frac{9}{80}$. 537. $a = 0.9 \ln 3$, $\delta = 0.1 \ln 3$.

5.7.

$$548. -2 -12(x-1) - 8(x-1)^2 \cdot 549. -1 - (x+1) - (x+1)^2 \cdot$$

550.
$$2 + \frac{x-4}{4} - \frac{(x-4)^2}{64}$$
. 551. $1 + x \ln 2 + \frac{x^2 \ln^2 2}{2} + \frac{x^3 \ln^3 2}{6}$.

552. 1,6487. 553. 0,754. 554. 0,587. 555.
$$y = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + R_{2n}(x)$$
.

556.
$$y = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + R_{2n+2}(x)$$
.

557.
$$y = \sum_{k=0}^{n} \frac{(-1)^{k-1} x^k}{k} + R_n(x)$$
.

5.8.

558. a)
$$(-\infty; +\infty)$$
 возрастает;

б)
$$(-6;0) \cup (6;+\infty)$$
 выпукла, $(-\infty;-6) \cup (0;6)$ вогнута, $\{-6:0:6\}$ перегиб:

- в) y = x наклонная асимптота.
- 559. а) (-∞;+∞) убывает;

б)
$$(-\infty;-1)\cup(0;1)$$
 выпукла, $(-1;0)\cup(1;+\infty)$ вогнута, $\{0\}$ перегиб;

в) y = 0 наклонная, $x = \pm 1$ вертикальные асимптоты.

560. а)
$$\left(-\infty;0\right) \cup \left(\sqrt[3]{4};+\infty\right)$$
 возрастает, $\left(0;1\right) \cup \left(1;\sqrt[3]{4}\right)$ убывает, $x_{m} = \sqrt[3]{4}$, $x_{M} = 0$;

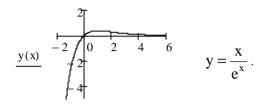
б)
$$\left(-\infty; -\sqrt[3]{2}\right) \cup \left(-\frac{2}{3}\sqrt[3]{2}; 0\right)$$
 выпукла,
$$\left(-\sqrt[3]{2}; -\frac{2}{3}\sqrt[3]{2}\right) \cup \left(1; +\infty\right)$$
 вогнута,
$$\left\{-\sqrt[3]{2}; -\frac{2}{3}\sqrt[3]{2}\right\}$$
 перегиб;

в) y = x наклонная, x = 1 вертикальная асимптоты.

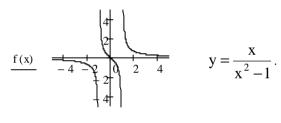
561. a)
$$(-\infty;1)$$
 возрастает, $(1;+\infty)$ убывает, $X_M = 2$;

- б) $(-\infty;2)$ выпукла, $(2;+\infty)$ вогнута, $\{2\}$ перегиб;
- в) $v = 0, x \rightarrow +\infty$ наклонная асимптота.
- 562. a) $(-\infty;3)$ возрастает, $(3;+\infty)$ убывает, $x_M = 3$;

б)
$$(-\infty;0) \cup (3-\sqrt{3};3+\sqrt{3})$$
 выпукла, $(0;3-\sqrt{3}) \cup (3+\sqrt{3};+\infty)$ вогнута, $\{0;3\pm\sqrt{3}\}$ перегиб;


- в) $y = 0, x \rightarrow +\infty$ наклонная асимптота.
- 563. а) (-1;1) возрастает, $(-\infty;-1) \cup (1;+\infty)$ убывает, $x_m = -1$, $x_M = 1$;

б)
$$\left(-\infty; -\sqrt{3}\right) \cup \left(0; \sqrt{3}\right)$$
 выпукла, $\left(-\sqrt{3}; 0\right) \cup \left(\sqrt{3}; +\infty\right)$ вогнута, $\left\{0; \pm\sqrt{3}\right\}$ перегиб;


- в) y = 0 наклонная асимптота.
- 564. а) $(1;+\infty)$ возрастает, $(-\infty;0)\cup(0;1)$ убывает, $x_m=1$;
 - б) $(-\infty;0)$ выпукла, $(0;+\infty)$ вогнута, перегиба нет;
 - в) $y = 0, x \to +\infty$ наклонная, x = 0 вертикальная асимптоты.

565. 4, 13.566. 0, 8.567.
$$-\frac{\pi}{2}$$
, $\frac{\pi}{2}$.568.0, $2\sqrt{3}-3$.

569.

X

X

ОГЛАВЛЕНИЕ

| ГЛАВА 1. ВВЕДЕНИЕ В КУРС МАТЕМАТИКИ | 1 |
|--|----|
| ГЛАВА2. ЛИНЕЙНАЯ АЛГЕБРА | 5 |
| ГЛАВА 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ | 15 |
| ГЛАВА 4. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. | 30 |
| ГЛАВА 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ | |
| ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ | 39 |
| OTRETLI | 47 |